【題目】如圖,在 Rt△ABC 中,∠A=30°,∠ACB=90°,點 D 為 AC 中點, 點 E 為 AB 邊上一動點,AE=DE,延長 ED 交 BC 的延長線于點 F.
(1)求證:△BEF 是等邊三角形;
(2)若 AB=12,求 DE 的長.
【答案】(1)見解析;(2)DE=3.
【解析】
(1)在Rt△ABC 中,∠A=30°,∠ACB=90°,可得∠B=60°,又D 為 AC 中點,AE=DE,可得∠A =∠ADE=30°,可得∠BEF= 60°,△BEF 是等邊三角形.
(2) 在 EF 上截取 FG=CF ,連接 CG, 可證得△ADE≌△CDG,AE=CG 設(shè) AE=x,可得BE=12-x,CF=CG=AE=x,BF=6+x,可求x的值,可得DE的長.
(1)A =30°,∠ACB =90°,,
∴∠B=60°.
∵AE=DE,
∴∠A =∠ADE=30°,
∴∠BEF=∠A +∠ADE= 60°.
∴△BEF 是等邊三角形.
(2)在 EF 上截取 FG=CF ,連接 CG,
∵∠F=60°,
∴△CFG 為等邊三角形.
∴∠FGC =∠F=∠BEF=60°,
∴∠AED =∠CGD,
在△ADE 和△CDG 中,
ADE CDG,AED CGD,AD CD,
∴△ADE≌△CDG(AAS),
∴AE=CG 設(shè) AE=x,則BE=12-x,
∵BC=6,
∴CF=CG=AE=x,
∴BF=6+x,
∴12-x=6+x,,
∴x=3,
∴DE=3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關(guān)于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB是一個直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD,OE.
(1) 如圖1,當∠BOC=70°時,求∠DOE的度數(shù).
(2) 如圖2,當射線OC在∠AOB內(nèi)繞點O旋轉(zhuǎn)時,∠DOE的大小是否發(fā)生變化?說明理由.
(3) 當射線OC在∠AOB外繞點O旋轉(zhuǎn)且∠AOC為鈍角時,畫出圖形,直接寫出相應的∠DOE的度數(shù).(不必寫出過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,點 A(2,1),點 A 與點 B 關(guān)于 y 軸對稱,AC∥y 軸,且 AC=3,連接 BC 交 y 軸于點 D.
(1)點 B 的坐標為_____,點 C 的坐標為_____;
(2)如圖 2,連接 OC,OC 平分∠ACB,求證:OB⊥OC;
(3)如圖 3,在(2)的條件下,點 P 為 OC 上一點,且∠PAC=45°,求點 P 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育委員把全班45名同學的體育鍛煉時間,并繪制了如圖所示的折線統(tǒng)計圖,則全班45名同學一周的體育鍛煉總時間的眾數(shù)和中位數(shù)分別是( )
A.9,9
B.9,10
C.18,9
D.18,18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,平移三角形ABD,使點D沿BD的延長線平移至點C,得到三角形,交AC于點E,AD平分∠BAC.
(1)猜想與之間的關(guān)系,并寫出理由;
(2)如果將三角形ABD平移至如圖2所示位置,得到三角形,請問平分嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠去年的總產(chǎn)值比總支出多500萬元,而今年計劃的總產(chǎn)值比總支出多950萬元.已知今年計劃總產(chǎn)值比去年增加15%,而今年計劃總支出比去年減少10%.求今年計劃的總產(chǎn)值和總支出各為多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AD、BD分別平分∠CAG、∠EBA,AD∥BC,BD交AC于F,連接CD,
(1)求證:AB=AC.
(2)當∠EBA的大小滿足什么條件時,以A,B,F(xiàn)為頂點三角形為等腰三角形?
(3)猜想∠BDC與∠DAC之間的數(shù)量關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,點E是AC上一點,連接BE.
(1)如圖1,若AB=4 ,BE=5,求AE的長;
(2)如圖2,點D是線段BE延長線上一點,過點A作AF⊥BD于點F,連接CD、CF,當AF=DF時,求證:DC=BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com