【題目】如圖,長(zhǎng)方形ABCD中,P是AD上一動(dòng)點(diǎn),連接BP,過(guò)點(diǎn)A作BP的垂線,垂足為F,交BD于點(diǎn)E,交CD于點(diǎn)G.
(1)當(dāng)AB=AD,且P是AD的中點(diǎn)時(shí),求證:AG=BP;
(2)在(1)的條件下,求的值;
(3)類(lèi)比探究:若AB=3AD,AD=2AP,的值為 .(直接填答案)
【答案】(1)證明見(jiàn)解析(2)(3)
【解析】
(1)根據(jù)BP⊥AG,AB=AD,四邊形ABCD是矩形,運(yùn)用AAS判定△ABP≌△DAG,即可得出AG=BP;
(2)根據(jù)△ABP≌△DAG,得出AP=DG,再根據(jù)AP=AD,即可得到DG=AD=AB,再根據(jù)AB∥CD,判定△DGE∽△BAE,最后根據(jù)相似三角形的性質(zhì),得出==;
(3)設(shè)AP=a,則AD=2AP=2a,AB=3AD=6a,根據(jù)△ABP∽△DAG,即可求得=,得出DG=a,再根據(jù)△DGE∽△BAE,運(yùn)用相似三角形的性質(zhì),得出===即可.
(1)如圖,∵BP⊥AG,∠BAD=90°,
∴∠ABF+∠BAF=90°,∠BAF+∠DAG=90°,
∴∠ABF=∠DAG,
在△ABP和△DAG中,
,
∴△ABP≌△DAG(AAS),
∴AG=BP;
(2)∵△ABP≌△DAG,
∴AP=DG,
∵AP=AD,
∴DG=AD=AB,
∵AB∥CD,
∴△DGE∽△BAE,
∴==;
(3)設(shè)AP=a,則AD=2AP=2a,AB=3AD=6a,
∵BP⊥AG,∠BAD=90°,
∴∠ABF+∠BAF=90°,∠BAF+∠DAG=90°,
∴∠ABF=∠DAG,
又∵∠BAP=∠ADG,
∴△ABP∽△DAG,
∴=,即==3,
∴DG=a,
∵AB∥GD,
∴△DGE∽△BAE,
∴===.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色不同外其余都相同,攪勻后,
(1)從中一次性摸出兩只球,用樹(shù)狀圖或列表表示其中一個(gè)是紅球另一個(gè)是白球的所有結(jié)果并求其概率.
(2)向袋子中放入若干個(gè)紅球(與原紅球相同),攪勻后,從中任取一個(gè)球是紅球的概率為,求放入紅球的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩輛汽車(chē)同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車(chē)與甲地的距離,t(分)表示汽車(chē)行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車(chē)的s與t的關(guān)系.
(1)L1表示哪輛汽車(chē)到甲地的距離與行駛時(shí)間的關(guān)系?
(2)汽車(chē)B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車(chē)的s與t的關(guān)系式.
(4)2小時(shí)后,兩車(chē)相距多少千米?
(5)行駛多長(zhǎng)時(shí)間后,A、B兩車(chē)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)把△ABC向上平移3個(gè)單位,再向右平移2個(gè)單位得△A′B′C′,在圖中畫(huà)出兩次平移后得到的圖形△A′B′C′,并寫(xiě)出A′、B′、C′的坐標(biāo).
(2)如果△ABC內(nèi)部有一點(diǎn)Q,根據(jù)(1)中所述平移方式得到對(duì)應(yīng)點(diǎn)Q′,如果點(diǎn)Q′坐標(biāo)是(m,n),那么點(diǎn)Q的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:如果一個(gè)三角形一條邊上的高等于這條邊,那么這個(gè)三角形叫做“等高底”三角形,這條邊叫做這個(gè)三角形的“等底”.
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請(qǐng)說(shuō)明理由.
(2)問(wèn)題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對(duì)稱(chēng)圖形得到△A'BC,連結(jié)AA′交直線BC于點(diǎn)D.若點(diǎn)B是△AA′C的重心,求的值.
(3)應(yīng)用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線l1上,點(diǎn)A在直線l2上,有一邊的長(zhǎng)是BC的倍.將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)45°得到△A'B'C,A′C所在直線交l2于點(diǎn)D.求CD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a>0)與x軸相交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C,對(duì)稱(chēng)軸為直線x=1.
(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)聯(lián)結(jié)AC、BC,若△ABC的面積為6,求此拋物線的表達(dá)式;
(3)在第(2)小題的條件下,點(diǎn)Q為x軸正半軸上一點(diǎn),點(diǎn)G與點(diǎn)C,點(diǎn)F與點(diǎn)A關(guān)于點(diǎn)Q成中心對(duì)稱(chēng),當(dāng)△CGF為直角三角形時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚(yú)網(wǎng)箱和捕魚(yú)網(wǎng)箱,每村參加清理人數(shù)及總開(kāi)支如下表:
村莊 | 清理養(yǎng)魚(yú)網(wǎng)箱人數(shù)/人 | 清理捕魚(yú)網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類(lèi)漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚(yú)網(wǎng)箱和捕魚(yú)網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開(kāi)支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚(yú)網(wǎng)箱和捕魚(yú)網(wǎng)箱,要使總支出不超過(guò)102000元,且清理養(yǎng)魚(yú)網(wǎng)箱人數(shù)小于清理捕魚(yú)網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過(guò)圓外一點(diǎn)作圓的切線.
已知:P為⊙O外一點(diǎn).
求作:經(jīng)過(guò)點(diǎn)P的⊙O的切線.
小敏的作法如下:如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C.
(2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O于A,B兩點(diǎn).
(3)作直線PA,PB.
老師認(rèn)為小敏的作法正確.
請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是 ;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是 .請(qǐng)寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,與x軸的一個(gè)交點(diǎn)是點(diǎn)A(3,0),其部分圖象如圖,則下列結(jié)論:
①2a+b=0;
②b2﹣4ac<0;
③一元二次方程ax2+bx+c=0(a≠0)的另一個(gè)解是x=﹣1;
④點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<0<x2,則y1<y2.
其中正確的結(jié)論是_____(把所有正確結(jié)論的序號(hào)都填在橫線上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com