【題目】在一個不透明的口袋中,放有三個標(biāo)號分別為1,2,3的質(zhì)地、大小都相同的小球.任意摸出一個小球,記為x,再從剩余的球中任意摸出一個小球,又記為y,得到點(x,y).
(1)用畫樹狀圖或列表等方法求出點(x,y)的所有可能情況;
(2)求點(x,y)在二次函數(shù)y=ax2﹣4ax+c(a≠0)圖象的對稱軸上的概率.
【答案】(1)見解析;有6種等可能的情況,分別為(1,2),(1,3),(2,1),(2,3),(3,1),(3,2);(2).
【解析】
試題分析:(1)利用樹狀圖展示所有6種等可能的情況;
(2)先利用二次函數(shù)的性質(zhì)求出拋物線的對稱軸方程,再在上述6種可能的結(jié)果數(shù)中找出點落在對稱軸上的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)畫樹狀圖為:
共有6種等可能的情況,分別為(1,2),(1,3),(2,1),(2,3),(3,1),(3,2);
(2)拋物線的對稱軸為直線x=﹣=2,
共有6種等可能的情況,其中點在對稱軸上的情況有2種,分別為(2,1),(2,3),
∴P(點(x,y)在對稱軸上)==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)道路交通管理條例的規(guī)定,在某段筆直的公路l上行駛的車輛,限速60千米/時.已知測速點M到測速區(qū)間的端點A,B的距離分別為50米、34米,M距公路l的距離(即MN的長)為30米.現(xiàn)測得一輛汽車從A到B所用的時間為5秒,通過計算判斷此車是否超速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑為1的⊙A的圓心與坐標(biāo)原點O重合,線段BC的端點分別在x軸與y軸上,點B的坐標(biāo)為(6,0),且sin∠OCB=.
(1)若點Q是線段BC上一點,且點Q的橫坐標(biāo)為m.
①求點Q的縱坐標(biāo);(用含m的代數(shù)式表示)
②若點P是⊙A上一動點,求PQ的最小值;
(2)若點A從原點O出發(fā),以1個單位/秒的速度沿折線OBC運(yùn)動,到點C運(yùn)動停止,⊙A隨著點A的運(yùn)動而移動.
①點A從O→B的運(yùn)動的過程中,若⊙A與直線BC相切,求t的值;
②在⊙A整個運(yùn)動過程中,當(dāng)⊙A與線段BC有兩個公共點時,直接寫出t滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)下列四組數(shù)據(jù)中,不能作為直角三角形的三邊長是()
A.3,4,5 B.3,5,7
C.5,12,13 D.6,8,10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D是AB邊上一點,以CD為邊作等邊三角形CDE,使點E,A在直線DC同側(cè),連接AE.求證:
(1)△AEC≌BDC;
(2)AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=α(30°<α<45°),∠AOB的余角為∠AOC,∠AOB的補(bǔ)角為∠BOD,OM平分∠AOC,ON平分∠BOD.
(1)如圖,當(dāng)α=40°,且射線OM在∠AOB的外部時,用直尺、量角器畫出射線OD,ON的準(zhǔn)確位置;
(2)求(1)中∠MON的度數(shù),要求寫出計算過程;
(3)當(dāng)射線OM在∠AOB的內(nèi)部時,用含α的代數(shù)式表示∠MON的度數(shù).(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列判斷:①在數(shù)軸上,原點兩旁的兩個點所表示的數(shù)都是互為相反數(shù);②任何正數(shù)必定大于它的倒數(shù);③5ab,,都是整式;④x2﹣xy+y2是按字母y的升冪排列的多項式,其中判斷正確的是( )
A.①② B.②③ C.③④ D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x+2與x軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是x=﹣且經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標(biāo);②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標(biāo).
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com