【題目】如果的乘積不含和項,那么和值分別是( )
A.B.
C.D.
【答案】D
【解析】
先把(a2+pa+8)(a2-3a+q)按多項式與多項式相乘的法則:多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加展開,再根據(jù)乘積不含a3和a2項,列出-3a3+pa3=0,a2q-3a2p+8a2=0,再求解就容易了.
解:(a2+pa+8)(a2-3a+q)=a4-3a3+a2q+pa3-3a2p+pqa+8a2-24a+8q=a4+(-3a3+pa3)+(a2q-3a2p+8a2)+pqa-24a+8q,
∵(a2+pa+8)(a2-3a+q)的乘積不含a3和a2項,
∴-3a3+pa3=0,a2q-3a2p+8a2=0,
∴a3(-3+p)=0,a2(q-3p+8)=0,
∴-3+p=0,q-3p+8=0,
∴p=3,q=1.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情景:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
(1)天天同學(xué)看過圖形后立即口答出:∠APC=110°,請你補(bǔ)全他的推理依據(jù).
如圖2,過點P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD.(___)
∴∠A+∠APE=180°.
∠C+∠CPE=180°.(___)
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.(___)
問題遷移:
(2)如圖3,AD∥BC,當(dāng)點P在A. B兩點之間運(yùn)動時,∠ADP=∠α,∠BCP=∠β,求∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請說明理由。
(3)在(2)的條件下,如果點P在A. B兩點外側(cè)運(yùn)動時(點P與點A. B. O三點不重合),請你直接寫出∠CPD與∠α、∠β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):
如圖①'在正方形ABCD中,過A點有直線AP,點B關(guān)于AP的對稱點為E,連接DE交AP于點F,當(dāng)∠BAP=20°時,則∠AFD= °;當(dāng)∠BAP=α°(0<α<45°)時,則∠AFD= °;猜想線段DF, EF, AF之間的數(shù)量關(guān)系:DF-EF= AF(填系數(shù));
(2)數(shù)學(xué)思考:
如圖②,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他條件不變,則∠AFD= °;線段DF, EF, AF之間的數(shù)量關(guān)系是否發(fā)生改變,若發(fā)生改變,請寫出數(shù)量關(guān)系并說明理由;
(3)類比探究:
如圖③,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他條件不變,則∠AFD= °;請直接寫出線段DF,EF,AF之間的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在BC,CD上,將△ABE沿AE折疊,使點B落在AC上的點B′處,又將△CEF沿EF折疊,使點C落在EB′與AD的交點C′處.則BC:AB的值為 ▲ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的方程的解為正整數(shù),且關(guān)于的不等式組有解且最多有個整數(shù)解,則滿足條件的所有整數(shù)的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D是BC的中點,且AD=AC,DE⊥BC,與AB相交于點E,EC與AD相交于點F.
(1)求證:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料
材料一:對于任意的非零實數(shù)和正實數(shù),如果滿足為整數(shù),則稱k是x的一個整商系數(shù),
例如:當(dāng)時,,則稱是的一個整商系數(shù);
當(dāng)時,,則稱是的一個整商系數(shù);
當(dāng)時,,則稱是的一個整商系數(shù);
給論:一個非零實數(shù)有無數(shù)個整商系數(shù),其中最小的一個整商系數(shù)記為;
例如: ,
材料二:對于一元二次方程的兩根,有如下關(guān)系:
請根據(jù)材料解決下列問題
若關(guān)于的方程:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸相交于A(﹣3,0)、B(1,0)兩點,與y軸相交于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)求D點坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,,,是等腰直角三角形,且,把繞點順時針旋轉(zhuǎn),得到;把繞點順時針旋轉(zhuǎn),得到.依次類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com