【題目】如圖,在RtABC中,∠ACB90°,ACBC8cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QB點(diǎn)出發(fā),以每秒1cm的速度向C點(diǎn)運(yùn)動(dòng),設(shè)P,Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t0t8)秒.

1BQ  BP  (用含t的式子表示).

2)當(dāng)t2時(shí),求PCQ的面積(提示:在一個(gè)三角形中,若兩個(gè)角相等,則角所對的邊也相等).

3)當(dāng)PQPC時(shí),求t的值.

【答案】1tcm,(8tcm;(2)△PCQ的面積=18cm2;(3)當(dāng)PQPC時(shí),t的值為s

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)即可求出AB,再根據(jù)P、Q速度即可表示出BQBP;

2)根據(jù)等腰三角形的性質(zhì)可得∠B=∠A45°,過點(diǎn)PPHBCH,可得△BPH為等腰直角三角形,從而得出BHPH的值,然后根據(jù)BCBQ的長即可求出CQ,從而求出PCQ的面積;

3)根據(jù)三線合一可得:CHQH,分別用t表示出CHQH,列方程即可.

1)∵RtABC中,∠ACB90°,ACBC8

ABAC8,

∵動(dòng)點(diǎn)QB點(diǎn)出發(fā),以每秒1cm的速度向C點(diǎn)運(yùn)動(dòng),

BQtcm

∵點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向點(diǎn)B運(yùn)動(dòng),

BPABAP=(8tcm,

故答案為:tcm,(8tcm;

2)∵∠ACB90°,ACBC,

∴∠B=∠A45°,

過點(diǎn)PPHBCH,如圖所示:

則△BPH為等腰直角三角形,

BHPHBP8t)=8t

t2,

PH6CQBCBQ826,

∴△PCQ的面積=PHCQ×6×618cm2);

3)當(dāng)PQPC時(shí),

PHBC,

CHQH,

BH8t,

CHBCBH8﹣(8t)=t,QHBCBQCH8tt82t,

t82t,

解得:t

∴當(dāng)PQPC時(shí),t的值為s

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有4個(gè)質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有數(shù)字2,3,4,x,甲、乙兩人每次同時(shí)從袋中各隨機(jī)摸出1個(gè)球,并計(jì)算摸出的這2個(gè)小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn),實(shí)驗(yàn)數(shù)據(jù)如下表:

摸球總次數(shù)

20

30

60

90

120

180

240

330

450

和為6”出現(xiàn)的頻數(shù)

10

13

24

30

37

58

82

110

150

和為6”出現(xiàn)的頻數(shù)

0.50

0.43

0.40

0.33

0.31

0.32

0.34

0.33

0.33

解答下列問題:

(1)如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)和為6”的頻率將穩(wěn)定在它的概率附近,估計(jì)出現(xiàn)和為6”的概率是   

(2)當(dāng)x=5時(shí),請用列表法或樹狀圖法計(jì)算和為6”的概率

(3)判斷x=5是否符合(1)的結(jié)論,若符合,請說明理由,若不符合,請你寫出一個(gè)符合(1)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)ykx+b的圖象與x軸,y軸分別交于點(diǎn)(2,0),點(diǎn)(0,3).有下列結(jié)論:圖象經(jīng)過點(diǎn)(1,﹣3);關(guān)于x的方程kx+b0的解為x2;關(guān)于x的方程kx+b3的解為x0;當(dāng)x2時(shí),y0.其中正確的是( 。

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了讓學(xué)生能更加了解溫州歷史,某校組織七年級(jí)師生共480人參觀溫州博物館.學(xué)校向租車公司租賃AB兩種車型接送師生往返,若租用A型車3輛,B型車6輛,則空余15個(gè)座位;若租用A型車5輛,B型車4輛,則15人沒座位.

1)求A、B兩種車型各有多少個(gè)座位;

2)若A型車日租金為350元,B型車日租金為400元,且租車公司最多能提供7B型車,應(yīng)怎樣租車能使座位恰好坐滿且租金最少,并求出最少租金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE

3)如圖3,在(2)的條件下,連接CGAB于點(diǎn)N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于EF點(diǎn)若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC切⊙O于點(diǎn)C,AB過圓心O交⊙O于點(diǎn)B、D,且AC=BC,若⊙O的半徑為2,圖中陰影部分的面積為 _____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為64,ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為( 。

A.6B.8C.9D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入冬季,空調(diào)再次迎來銷售旺季,某商場用元購進(jìn)一批空調(diào),該空調(diào)供不應(yīng)求,商家又用元購進(jìn)第二批這種空調(diào),所購數(shù)量比第一批購進(jìn)數(shù)量多臺(tái),但單價(jià)是第一批的.

(1)該商場購進(jìn)第一批空調(diào)的單價(jià)多少元?

(2)若兩批空調(diào)按相同的標(biāo)價(jià)出售,春節(jié)將近,還剩下臺(tái)空調(diào)未出售,為減少庫存回籠資金,商家決定最后的臺(tái)空調(diào)按九折出售,如果兩批空調(diào)全部售完利潤率不低于(不考慮其他因素),那么每臺(tái)空調(diào)的標(biāo)價(jià)至少多少元?

查看答案和解析>>

同步練習(xí)冊答案