【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),其中,.
(1)求拋物線的解析式;
(2)連接,在直線上方的拋物線上有一動點(diǎn),連接,與直線相交于點(diǎn),當(dāng)時(shí), 求的值;
(3)點(diǎn)是直線上一點(diǎn),在平面內(nèi)是否存在點(diǎn),使以點(diǎn),,,為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1)(2)(3),,,
【解析】
(1)將,代入得出關(guān)于a,b的二元一次方程,求解即可;
(2)過點(diǎn)作軸的平行線,交直線與點(diǎn),交軸于點(diǎn),過點(diǎn)作軸的平行線,交直線與點(diǎn),證明,得出,設(shè),,可得出關(guān)于t的方程,解出t值,即可得出答案;
(3)分①當(dāng)PC為菱形的邊時(shí),②當(dāng)PC為對角線時(shí),兩種情況討論即可.
(1)將,代入
得,解得
解析式為;
(2)當(dāng)時(shí)
設(shè)直線的解析式為,將,分別代入得:
過點(diǎn)作軸的平行線,交直線與點(diǎn),交軸于點(diǎn)
過點(diǎn)作軸的平行線,交直線與點(diǎn)
當(dāng)時(shí)
,
軸
設(shè),
解得:
,
在中,;
(3)設(shè)直線BC的解析式為:y=kx+b,
將B(4,0),C(0,3)代入得,
解得,
∴直線BC的解析式為:y=x+3,
①當(dāng)PC為菱形的邊時(shí),
∵四邊形PQCA是菱形,
∴AQ∥PC,
可設(shè)AQ的解析式為:y=x+b1,
將點(diǎn)A(-1,0)代入得b1=,
∴AQ的解析式為:y=x,
∴可設(shè)Q(m,m),
根據(jù)勾股定理得AC的長為,
根據(jù)菱形的性質(zhì)可得AC=AQ,
∴=,
解得m=,
∴m1=,m2=,
將m1,m2代入y=x,
可得,;
②當(dāng)PC為對角線時(shí),
根據(jù)菱形的性質(zhì)可得AQ⊥PC,
∴可設(shè)AQ的解析式為:y=x+b3,
將A(-1,0)代入得b3=,
∴AQ的解析式為:y=x+,
∴可設(shè)Q(n,n+),
根據(jù)菱形的性質(zhì)可得AC=CQ,
∴=,
解得n1=-5,n2=,
將n1,n2代入y=x+,
可得,;
綜上,Q點(diǎn)的坐標(biāo)為,,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(2)計(jì)算這10位居民一周內(nèi)使用共享單車的平均次數(shù);
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)(為常數(shù),)的圖像在第一象限內(nèi)交于點(diǎn),且與軸、軸分別交于兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)點(diǎn)在軸上,且的面積等于,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某劇院舉行專場音樂會,成人票每張20元,學(xué)生票每張5元.暑假期間,為了豐富廣大師生的業(yè)余文化生活,影劇院制定了兩種優(yōu)惠方案,方案一:購買一張成人票贈送一張學(xué)生票;方案二:按總價(jià)的90%付款.某校有4名老師帶隊(duì),與若干名(不少于4人)學(xué)生一起聽音樂會.設(shè)學(xué)生人數(shù)為x人,(x為整數(shù)).
(Ⅰ)根據(jù)題意填表:
學(xué)生人數(shù)/人 | 4 | 10 | 20 | … |
方案一付款金額/元 | 80 | 110 | … | |
方案二付款金額/元 | 90 | 117 | … |
(Ⅱ)設(shè)方案一付款總金額為元,方案二付款總金額為元,分別求,關(guān)于x的函數(shù)解析式;
(Ⅲ)根據(jù)題意填空:
①若用兩種方案購買音樂會的花費(fèi)相同,則聽音樂會的學(xué)生有________________人;
②若有60名學(xué)生聽音樂會,則用方案_______________購買音樂會票的花費(fèi)少;
③若用一種方案購買音樂會票共花費(fèi)了450元,則用方案________________購買音樂會票,使聽音樂的學(xué)生人數(shù)多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年月日,葫蘆島市九年級師生結(jié)束了兩個(gè)多月的線上教學(xué)和學(xué)習(xí),正式回歸校園,在開學(xué)第一天,某校教導(dǎo)處老師為了解九年級學(xué)生對“新冠”傳播與防治知識的掌握情況,隨機(jī)抽取了部分學(xué)生進(jìn)行了防疫知識的測試,測試后的成績,按得分劃分為四個(gè)等級,:優(yōu)秀,:良好,:及格,:不及格,并繪制了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)提供的信息,解答以下問題:
(1)本次調(diào)查抽取的學(xué)生人數(shù)有多少人?
(2)扇形統(tǒng)計(jì)圖中 , 并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該校九年級有名學(xué)生,學(xué)校決定對“不及格”的學(xué)生進(jìn)行一次防疫知識的培訓(xùn),那么需要接受培訓(xùn)的學(xué)生大約有多少人?
(4)已知“優(yōu)秀”的同學(xué)有名男生和名女生,從中隨機(jī)抽取名進(jìn)行防疫知識的交流,請用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點(diǎn)E、F.
(1)求證:四邊形AECF是菱形;
(2)當(dāng)BE=3,AF=5時(shí),求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園手機(jī)”現(xiàn)象越來越受到社會的關(guān)注.“五一”期間,小記者劉凱隨機(jī)調(diào)查了城區(qū)若干名學(xué)生和家長對中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如圖所示的統(tǒng)計(jì)圖:
(1)求這次調(diào)查的家長人數(shù),并補(bǔ)全圖①:
(2)求圖②中表示家長“贊成”的圓心角的度數(shù);
(3)從這次接受調(diào)查的學(xué)生中,隨機(jī)抽查一個(gè),恰好是“無所謂”態(tài)度的學(xué)生的概率是多少?
(4)為更深入的了解學(xué)生的看法,又從“贊成”的學(xué)生甲、乙、丙、丁四人中隨機(jī)選取2人,請用樹狀圖法或列表法求出恰好選中甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“食品安全”受到全社會的廣泛關(guān)注,育才中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面的兩幅尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有________人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為_________;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若對食品安全知識達(dá)到“了解”程度的學(xué)生中,男、女生的比例恰為,現(xiàn)從中隨機(jī)抽取人參加食品安全知識競賽,則恰好抽到個(gè)男生和個(gè)女生的概率________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“創(chuàng)建文明校園”活動周,活動周設(shè)置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個(gè)主題,每個(gè)學(xué)生選一個(gè)主題參與.為了解活動開展情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)本次隨機(jī)調(diào)查的學(xué)生人數(shù)是 人;
(2)請你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“A”所在扇形的圓心角等于 度;
(4)小明和小華各自隨機(jī)參加其中的一個(gè)主題活動,請用畫樹狀圖或列表的方式,求他們恰好同時(shí)選中“文明禮儀”或“生態(tài)環(huán)境”主題的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com