已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個(gè)單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)直線y=
1
2
x+b(b<k)與此圖象有兩個(gè)公共點(diǎn)時(shí),b的取值范圍.
(1)由題意得,△=16-8(k-1)≥0.
∴k≤3.
∵k為正整數(shù),
∴k=1,2,3;

(2)設(shè)方程2x2+4x+k-1=0的兩根為x1,x2,則
x1+x2=-2,x1•x2=
k-1
2

當(dāng)k=1時(shí),方程2x2+4x+k-1=0有一個(gè)根為零;
當(dāng)k=2時(shí),x1•x2=
1
2
,方程2x2+4x+k-1=0沒(méi)有兩個(gè)不同的非零整數(shù)根;
當(dāng)k=3時(shí),方程2x2+4x+k-1=0有兩個(gè)相同的非零實(shí)數(shù)根-1.
綜上所述,k=1和k=2不合題意,舍去,k=3符合題意.
當(dāng)k=3時(shí),二次函數(shù)為y=2x2+4x+2,把它的圖象向下平移8個(gè)單位得到的圖象的解析式為y=2x2+4x-6;

(3)設(shè)二次函數(shù)y=2x2+4x-6的圖象與x軸交于A、B兩點(diǎn),則A(-3,0),B(1,0).
依題意翻折后的圖象如圖所示.
當(dāng)直線y=
1
2
x+b經(jīng)過(guò)A點(diǎn)時(shí),可得b=
3
2

當(dāng)直線y=
1
2
x+b經(jīng)過(guò)B點(diǎn)時(shí),可得b=-
1
2

由圖象可知,符合題意的b(b<3)的取值范圍為-
1
2
<b<
3
2


(3)依圖象得,要圖象y=
1
2
x+b(b小于k)與二次函數(shù)圖象有兩個(gè)公共點(diǎn)時(shí),顯然有兩段.
而因式分解得y=2x2+4x-6=2(x-1)(x+3),
第一段,當(dāng)y=
1
2
x+b過(guò)(1,0)時(shí),有一個(gè)交點(diǎn),此時(shí)b=-
1
2

當(dāng)y=
1
2
x+b過(guò)(-3,0)時(shí),有三個(gè)交點(diǎn),此時(shí)b=
3
2
.而在此中間即為兩個(gè)交點(diǎn),此時(shí)-
1
2
<b<
3
2

第二段,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折后,
開(kāi)口向下的部分的函數(shù)解析式為y=-2(x-1)(x+3).顯然,
當(dāng)y=
1
2
x+b與y=-2(x-1)(x+3)(-3<x<1)相切時(shí),y=
1
2
x+b與這個(gè)二次函數(shù)圖象有三個(gè)交點(diǎn),若直線再向上移,則只有兩個(gè)交點(diǎn).
因?yàn)閎<3,而y=
1
2
x+b(b小于k,k=3),所以當(dāng)b=3時(shí),將y=
1
2
x+3代入二次函數(shù)y=-2(x-1)(x+3)整理得,
4x2+9x-6=0,△>0,所以方程有兩根,那么肯定不將有直線與兩截結(jié)合的二次函數(shù)圖象相交只有兩個(gè)公共點(diǎn).這種情況故舍去.
綜上,-
1
2
<b<
3
2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖已知二次函數(shù)圖象的頂點(diǎn)為原點(diǎn),直線y=
1
2
x+4
的圖象與該二次函數(shù)的圖象交于A點(diǎn)(8,8),直線與x軸的交點(diǎn)為C,與y軸的交點(diǎn)為B.
(1)求這個(gè)二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
(2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A,B不重合),過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于D點(diǎn),與x軸交于點(diǎn)E.設(shè)線段PD的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、D、B為頂點(diǎn)的三角形與△BOC相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形的長(zhǎng)是4cm,寬是3cm,如果將長(zhǎng)和寬都增加xcm,那么面積增加ycm2
(1)求y與x的函數(shù)表達(dá)式;
(2)求當(dāng)邊長(zhǎng)增加多少時(shí),面積增加8cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)拋物線y=ax2+bx+c與x軸交于兩個(gè)不同的點(diǎn)A(-l,0)、B(4,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的解析式:
(2)問(wèn)拋物線上是否存在一點(diǎn)M,使得S△ABM=2S△ABC?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)已知點(diǎn)D(1,n)在拋物線上,過(guò)點(diǎn)A的直線y=-x-1交拋物線于另一點(diǎn)E.
①求tan∠ABD的值:
②若點(diǎn)P在x軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,拋物線經(jīng)過(guò)點(diǎn)A(12,0)、B(-4,0)、C(0,-12).頂點(diǎn)為M,過(guò)點(diǎn)A的直線y=kx-4交y軸于點(diǎn)N.
(1)求該拋物線的函數(shù)關(guān)系式和對(duì)稱(chēng)軸;
(2)試判斷△AMN的形狀,并說(shuō)明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點(diǎn)D、E(如圖②).當(dāng)直線l平移時(shí)(包括l與直線AN重合),在拋物線對(duì)稱(chēng)軸上是否存在點(diǎn)P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫(xiě)出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓M與x軸相交于A,B兩點(diǎn),其坐標(biāo)分別為A(-3,0),B(1,0),直徑CD垂直于x軸于N,直線CE切圓M于C,直線FG切圓M于F,交CE于G,已知點(diǎn)G的橫坐標(biāo)為3,
(1)若拋物線y=-x2-2x+m經(jīng)過(guò)A,B,D三點(diǎn),求m的值及點(diǎn)D的坐標(biāo);
(2)求直線DF的解析式;
(3)是否存在過(guò)點(diǎn)G的直線,使它與(1)中拋物線的兩個(gè)交點(diǎn)的橫坐標(biāo)之和等于4?若存在,請(qǐng)求出滿足條件的直線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P是拋物線y2=x2-6x+9對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為了順應(yīng)市場(chǎng)要求,某市電子玩具制造公司技術(shù)部研制開(kāi)發(fā)一種新產(chǎn)品,年初上市后,公司經(jīng)歷了從虧損到盈利的過(guò)程.下面的二次函數(shù)圖象(部分)刻畫(huà)了該公司年初以來(lái)累積利潤(rùn)s(萬(wàn)元)與銷(xiāo)售時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s和t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問(wèn)題:
(1)由已知圖象上的三點(diǎn)坐標(biāo),求累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤(rùn)可達(dá)到6萬(wàn)元?
(3)求第9個(gè)月公司所獲利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)C(
3
,0),點(diǎn)D(0,1),CD的中垂線交CD于點(diǎn)E,交y軸于點(diǎn)B,點(diǎn)P從點(diǎn)C出發(fā)沿CO方向以每秒2
3
個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從原點(diǎn)O出發(fā)沿OD方向以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)D時(shí),點(diǎn)P,Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒.
(1)求出點(diǎn)B的坐標(biāo);
(2)當(dāng)t為何值時(shí),△POQ與△COD相似?
(3)當(dāng)點(diǎn)P在x軸負(fù)半軸上時(shí),記四邊形PBEQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(4)在點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中,將△POQ繞點(diǎn)O旋轉(zhuǎn)180°,點(diǎn)P的對(duì)應(yīng)點(diǎn)P′,點(diǎn)Q的對(duì)應(yīng)點(diǎn)Q′,當(dāng)線段P′Q′與線段BE有公共點(diǎn)時(shí),拋物線y=ax2+1經(jīng)過(guò)P′Q′的中點(diǎn),此時(shí)的拋物線與x軸正半軸交于點(diǎn)M.由已知,直接寫(xiě)出:①a的取值范圍為_(kāi)_____;②點(diǎn)M移動(dòng)的平均速度是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案