【題目】如圖△ABC中,AB=AC=12cm,BC=9cm,若點Q在線段CA上以4cm/s的速度由點C向點A運動,點PBC線段上以3cm/s的速度由BC運動,求多長時間點Q與點P第一次在哪條邊上相遇?(

A.24s BCB.12s BC

C.24s ABD.12s AC

【答案】A

【解析】

因為VQVP,只能是點Q追上點P,即點Q比點P多走AB+AC的路程,據(jù)此列出方程,解這個方程即可求得.

因為VQVP,只能是點Q追上點P,即點Q比點P多走AB+AC的路程,

設經(jīng)過x秒后PQ第一次相遇,

依題意得:4x=3x+2×12,

解得:x=24

此時P運動了24×3=72cm

又∵△ABC的周長為33cm,72=33×2+6

∴點P、QBC邊上相遇,即經(jīng)過了24秒,點P與點Q第一次在BC邊上相遇.

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖:點D、EH、G分別在ABC的邊上DEBC,∠3=B,DG、EH交于點F.求證:∠1+2=180°

證明:(請將下面的證明過程補充完整)

DEBC(已知)

∴∠3=EHC______

∵∠3=B(已知)

∴∠B=EHC______

ABEH______

∴∠2+______=180°______

∵∠1=4______

∴∠1+2=180°(等量代換)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知AB=AC,D為∠BAC的角平分線上面一點,連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點,連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點,連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第n個圖形中有全等三角形的對數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,厘米,,厘米,點的中點,如果點在線段上以厘米/秒的速度由點向點運動,同時點在線段上由點向點運動.當一個點停止運動時,另一個點也隨之停止運動.

(1)用含有的代數(shù)式表示,則_______厘米;

(2)若點的運動速度與點的運動速度相等,經(jīng)過秒后,是否全等,請說明理由;

(3)若點的運動速度與點的運動速度不相等,那么當點的運動速度為多少時,能夠使全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是輪滑場地的截面示意圖,平臺ABx軸(水平)18米,與y軸交于點B,與滑道y=(x≥1)交于點A,且AB=1米.運動員(看成點)在BA方向獲得速度v/秒后,從A處向右下飛向滑道,點M是下落路線的某位置.忽略空氣阻力,實驗表明:M,A的豎直距離h(米)與飛出時間t(秒)的平方成正比,且t=1h=5,M,A的水平距離是vt米.

(1)求k,并用t表示h;

(2)設v=5.用t表示點M的橫坐標x和縱坐標y,并求yx的關系式(不寫x的取值范圍),及y=13時運動員與正下方滑道的豎直距離;

(3)若運動員甲、乙同時從A處飛出,速度分別是5/秒、v/秒.當甲距x1.8米,且乙位于甲右側超過4.5米的位置時,直接寫出t的值及v的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電力公司為鼓勵市民節(jié)約用電,采取按月用電量分段收費的辦法,已知某戶居民每月應繳電費y()與用電量x()的函數(shù)圖象是一條折線(如圖),根據(jù)圖象解答下列問題.

(1)分別寫出當0≤x≤100x100時,yx間的函數(shù)關系式;

(2)若該用戶某月用電62度,則應繳費多少元?若該用戶某月繳費105元,則該用戶該月用了多少度電?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等,交易其一,金輕十六兩,問金、銀一枚各重幾何?”意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等,兩袋互相交換1枚后,甲袋比乙袋輕了16兩(袋子重量忽略不計),問黃金、白銀每枚各重多少兩?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,點O為坐標原點,點Ax軸的負半軸上,直線y=﹣x+x軸、y軸分別交于B、C兩點,四邊形ABCD為菱形.

(1)如圖1,求點A的坐標;

(2)如圖2,連接AC,點PACD內(nèi)一點,連接AP、BP,BPAC交于點G,且∠APB=60°,點E在線段AP上,點F在線段BP上,且BF=AE,連接AF、EF,若∠AFE=30°,求AF2+EF2的值;

(3)如圖3,在(2)的條件下,當PE=AE時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校組織學生乘汽車去自然保護區(qū)野營,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;原路返回時,汽車以40km/h的速度下坡,又以50km/h的速度走平路,共用了6 h。問平路和坡路各有多遠?

查看答案和解析>>

同步練習冊答案