【題目】ABC中,ABAC,∠BAC90°,點D在射線BC上(不與點B、點C重合),將線段ADA逆時針旋轉90°得到線段AE,作射線BA與射線CE,兩射線交于點F

1)若點D在線段BC上,如圖1,請直接寫出CDEF的關系.

2)若點D在線段BC的延長線上,如圖2,(1)中的結論還成立嗎?請說明理由.

3)在(2)的條件下,連接DE,GDE的中點,連接GF,若tanAECAB,求GF的長.

【答案】1CDEFCDEF;(2)結論仍然成立,理由見解析;(3

【解析】

1)由旋轉的性質可得AD=AE,∠DAE=90°=BAC,由“SAS”可證△ABD≌△ACE,可得BD=CE,∠ABD=ACE=45°,可證CDEF,由等腰三角形的性質可得BC=CF,可證CD=EF

2)由旋轉的性質可得AD=AE,∠DAE=90°=BAC,由“SAS”可證△ABD≌△ACE,可得BD=CE,∠ABD=ACE=45°,可證CDEF,由等腰三角形的性質可得BC=CF,可證CD=EF;

3)過點AANCE于點N,過點GGHCEH,由直角三角形的性質可求BC=CF=2AN=CN=1,銳角三角函數(shù)可求EN=2,由平行線分線段成比例可求GH,FH的長,由勾股定理可求解.

1CDEF,CDEF,

理由如下:∵AB=AC,∠BAC=90°,

∴∠ABC=ACB=45°,

∵將線段ADA逆時針旋轉90°得到線段AE,

AD=AE,∠DAE=90°=BAC,

∴∠BAD=CAE,且AB=AC,AD=AE,

∴△ABD≌△ACESAS

BD=CE,∠ABD=ACE=45°,

∴∠BCF=ACB+ACE=90°,

CDEF,

又∵∠ABC=45°,

∴∠BFC=ABC,

BC=CF,

CD=EF;

2)結論仍然成立,

理由如下:∵ABAC,∠BAC90°,

∴∠ABC=∠ACB45°,

將線段ADA逆時針旋轉90°得到線段AE

∴ADAE,∠DAE90°∠BAC

∴∠BAD∠CAE,且ABAC,ADAE

∴△ABD≌△ACESAS

∴BDCE,∠ABD∠ACE45°

∴∠BCF=∠ACB+ACE90°,

CDEF,

又∵∠ABC45°,

∴∠BFC=∠ABC,

BCCF,

CDEF;

3)如圖,過點AANCE于點N,過點GGHCEH

,

BCCF2,

ANCE,∠ACF45°,

ANCN1,

,

EN2,

ECCN+EN3,

EFECCF1CD,

GHCE,∠ECD90°,

HGCD,

,且EGDG,

,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c(a≠0)的圖象經(jīng)過點(12),且與x軸交點的橫坐標分別為x1x2,其中﹣2x1<﹣1,0x21,下列結論:①4a2b+c0;②2ab0;③a0;④b2+8a4ac,其中正確的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點P是這個菱形內(nèi)部或邊上的一點.若以P,B,C為頂點的三角形是等腰三角形,則P,A(P,A兩點不重合)兩點間的最短距離為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA與⊙O相切于點A,過點AABOP,垂足為C,交⊙O于點B.連接PB,AO,并延長AO交⊙O于點D,與PB的延長線交于點E.

(1)求證:PB是⊙O的切線;

(2)若OC=3,AC=4,求sinE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,A(0,0),B(20),AP1B是等腰直角三角形,且∠P190°,把AP1B繞點B順時針旋轉180°,得到BP2C,把BP2C繞點C順時針旋轉180°,得到CP3D,依此類推,得到的等腰直角三角形的直角頂點P2020的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,B=90°,點EAC的中點,AC=2ABBAC的平分線ADBC于點D,作AFBC,連接DE并延長交AF于點F,連接FC.

求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的半徑為4,過圓外一點的兩條切線,、為切點,若,則陰影部分的面積是__________.(結果保留

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一次函數(shù)y=﹣x6x軸,y軸分別交于點A,B將直線AB沿y軸正方向平移與反比例函數(shù)yx0)的圖象分別交于點C,D,連接BCx軸于點E,連接AC,已知BE3CE,且SABE27

1)求直線AC和反比例函數(shù)的解析式;

2)連接AD,求ACD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線交坐標軸于AC兩點,拋物線AC兩點.

1)求拋物線的解析式;

2)若點P為拋物線位于第三象限上一動點,連接PA,PC,試問△PAC是否存在最大值,若存在,請求出△APC取最大值以及點P的坐標,若不存在,請說明理由;

3)點M為拋物線上一點,點N為拋物線對稱軸上一點,若△NMC是以∠NMC為直角的等腰直角三角形,請直接寫出點M的坐標.

查看答案和解析>>

同步練習冊答案