【題目】如圖,在ABCD中,AD=2AB,FAD的中點(diǎn),作CEAB,垂足E在線段AB上(E不與A、B重合),連接EF、CF,則下列結(jié)論中一定成立的是 ( )

①∠DCF=BCD;EF=CF;④∠DFE=4AEF

A. ①②③④ B. ①②③ C. ①② D. ①②④

【答案】B

【解析】分析:分別利用平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì)得出△AEF≌△DMFASA),得出對應(yīng)線段之間關(guān)系進(jìn)而得出答案.

詳解①∵FAD的中點(diǎn),AF=FD

∵在ABCDAD=2AB,AF=FD=CD,∴∠DFC=DCF

ADBC∴∠DFC=FCB,∴∠DCF=BCF,∴∠DCF=BCD,正確;

延長EF,CD延長線于M

∵四邊形ABCD是平行四邊形ABCD,∴∠A=MDF

FAD中點(diǎn)AF=FD.在AEF和△DFM, ∴△AEF≌△DMFASA),FE=MF,AEF=M

CEAB,∴∠AEC=90°,∴∠AEC=ECD=90°.

FM=EF,EF=CF故②正確;

③∵EF=FM,SEFC=SCFM

MCBE,SBEC2SEFC

故③正確

④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x

∵∠AEF=90°﹣x∴∠DFE=3AEF,故④錯誤

故答案為:①②③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周

寫出點(diǎn)B的坐標(biāo)______

當(dāng)點(diǎn)P移動了4秒時,描出此時P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).

在移動過程中,當(dāng)點(diǎn)Px軸距離為5個單位長度時,求點(diǎn)P移動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題

(1)(+16)+(-25)-(-24)+(-32)

(2)(-26.54)-︱-6.4︱+18.54+6.4

(3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹教育部關(guān)于中小學(xué)生“每天鍛煉一小時”的要求,某市教育局做了一次隨機(jī)抽樣調(diào)查,其內(nèi)容是:(1)學(xué)生每天鍛煉時間是否達(dá)到1小時;(2)學(xué)生每天鍛煉時間未達(dá)到1小時的原因.隨機(jī)調(diào)查了600名學(xué)生,把所得的數(shù)據(jù)制成了如下的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(不完整)
根據(jù)圖示,回答以下問題:
(1)每天鍛煉時間達(dá)到1小時的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是
每天鍛煉時間未達(dá)到1小時的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是;
每天鍛煉時間未達(dá)到1小時的人數(shù)為人,其中原因是“時間被擠占”的人數(shù)是人;
(2)補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;
(3)若該市現(xiàn)有中小學(xué)生約27萬人,據(jù)此調(diào)查,可估計(jì)今年該市中小學(xué)生每天鍛煉未達(dá)到1小時的學(xué)生約有多少萬人?
(4)從這次接受調(diào)查的學(xué)生中,隨機(jī)抽取一名學(xué)生的“每天鍛煉一小時”的情況,回答內(nèi)容為“時間被擠占”的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的三個頂點(diǎn)的坐標(biāo)分別為A﹣5,0)、B﹣2,3)、C﹣1,0

(1)畫出ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對稱的A1B1C1;

(2)ABC繞坐標(biāo)原點(diǎn)O順時針旋轉(zhuǎn)90°畫出對應(yīng)的A′B′C′,

(3)若以A′B′、C′D′為頂點(diǎn)的四邊形為平行四邊形,請直接寫出在第四象限中的D′坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°.點(diǎn)D是直線BC上的一個動點(diǎn),連接AD,并以AD為邊在AD的右側(cè)作等邊△ADE.

(1)如圖①,當(dāng)點(diǎn)E恰好在線段BC上時,請判斷線段DE和BE的數(shù)量關(guān)系,并結(jié)合圖①證明你的結(jié)論;
(2)當(dāng)點(diǎn)E不在直線BC上時,連接BE,其它條件不變,(1)中結(jié)論是否成立?若成立,請結(jié)合圖②給予證明;若不成立,請直接寫出新的結(jié)論;
(3)若AC=3,點(diǎn)D在直線BC上移動的過程中,是否存在以A、C、D、E為頂點(diǎn)的四邊形是梯形?如果存在,直接寫出線段CD的長度;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),且、滿足

點(diǎn)表示的數(shù)為________;點(diǎn)表示的數(shù)為________

若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,請?jiān)跀?shù)軸上找一點(diǎn),使,則點(diǎn)表示的數(shù)________

若在原點(diǎn)處放一擋板,一小球甲從點(diǎn)處以個單位/秒的速度向左運(yùn)動;同時另一小球乙從點(diǎn)處以個單位/秒的速度也向左運(yùn)動,在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動,設(shè)運(yùn)動的時間為(秒),請分別表示出甲、乙兩小球到原點(diǎn)的距離(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小型企業(yè)實(shí)行工資與業(yè)績掛鉤制度,工人工資分為A、B、C、D四個檔次.小明對該企業(yè)三月份工人工資進(jìn)行調(diào)查,并根據(jù)收集到的數(shù)據(jù),繪制了如下尚不完整的統(tǒng)計(jì)表與扇形統(tǒng)計(jì)圖.

根據(jù)上面提供的信息,回答下列問題:
(1)求該企業(yè)共有多少人?
(2)請將統(tǒng)計(jì)表補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中“C檔次”的扇形所對的圓心角是度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn),點(diǎn)在反比例函數(shù)的圖象上,作軸于點(diǎn).

(1)的面積為______;

(2)若點(diǎn)的橫坐標(biāo)為4,點(diǎn)軸的正半軸,且是等腰三角形,求點(diǎn)的坐標(biāo);

(3)動點(diǎn)從原點(diǎn)出發(fā),沿軸的正方向運(yùn)動,以為直角邊,在的右側(cè)作等腰, ;若在點(diǎn)運(yùn)動過程中,斜邊始終在軸上,求 的值.

查看答案和解析>>

同步練習(xí)冊答案