【題目】如圖1,在矩形ABCD中,AD=3,DC=4,動點P在線段DC上以每秒1個單位的速度從點D向點C運動過點P作PQ∥AC交AD于Q,將△PDQ沿PQ翻折得到△PQE. 設(shè)點P的運動時間為t(s).

(1)當(dāng)點E落在邊AB上時,t的值為 ;

(2)設(shè)△PQE與△ADC重疊部分的面積為s,求s與t的函數(shù)關(guān)系式;

(3)如圖2,以PE為直徑作⊙O當(dāng)⊙O與AC邊相切時,求CP的長.

【答案】(1)(2)s=(當(dāng)0<t≤2),s=(2<t≤4)(3)

【解析】分析:(1)過PPFBAF,由∠QPD=∠ACD,得到∠QPD和∠ACD的三角函數(shù)相等,得到QD=PQ=,EQ=QD=,AQ=.在△EFP中,由勾股定理得到EF=,由同角的余角相等,得到∠FEP=∠EQA,得到cosFEP=cosEQA,即,解方程即可得到結(jié)論;

2)當(dāng)E剛好在CA上時,如圖3,由平行線的性質(zhì)和折疊的性質(zhì)得到∠1=∠4=∠2=∠3,得到PC=PE=PD=t,即2t=4,解方程即可.然后分兩種情況討論:

當(dāng)時, S=SEPQ=SPDQ即可得到結(jié)論;

當(dāng)時,如圖4,由(2)可知,PM=PC=4-t,得到EM=t-(4-t)=2t4,由相似三角形的性質(zhì)得到 ,由 S=即可得到結(jié)論.

3)如圖,設(shè)切點為H,作PGACG,連接HO并延長交PQF.設(shè)CP5x,則PG3x,PDPE45x,由OF OP 得到HFOHOF= 4-5x ,從而得到 4-5x =3x,求出x的值 ,由CP=5x即可得到結(jié)論

詳解:(1)過PPFBAF.在△ADC中,sinACD=,cosACD=.∵PQCA,∴∠QPD=∠ACD,tanACD=.∵PD=PE=t,∴QD=,PQ=,∴EQ=QD=,AQ=.在△EFP中,∵PF=3,PE=t,∴EF=.∵∠PEQ=90°,∴∠FEP+∠EPF=90°,∠AEQ+∠EQA=90°,∴∠FEP=∠EQA,∴cosFEP=cosEQA,∴,解得:t=;

2)當(dāng)E剛好在CA上時,如圖3.∵PQCA,∴∠1=∠4,∠2=∠3.∵∠3=∠4,∴∠1=∠2,∴PC=PE.∵PE=PD=t,∴PC=PD=t,∴2t=4,解得:t=2

當(dāng)時,如圖1S=SEPQ=SPDQ=PDQD==;

當(dāng)時,如圖4,由(2)可知,PM=PC=4-t,∴EM=t-(4-t)=2t4.∵ACPQ,∴△EMN∽△EPQ,∴ .∵SEPQ=SPDQ=PDQD==,∴ ,∴S==-=

綜上所述:S=

3)如圖,設(shè)切點為H,作PGACG,連接HO并延長交PQF

設(shè)CP5x,則PG3x,PDPE45x

OF OP HFOHOFOPOF OP PD 4-5x

4-5x =3x,解得x ,∴CP=5x

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB在同一條直線上,OD、OE分別平分∠AOC和∠BOC.(1)求∠DOE的度數(shù);(2)如果∠COD=65°,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將連續(xù)的奇數(shù)1、3、5、7、9,……排成如下的數(shù)表:

(1)十字框中的5個數(shù)的和與中間的數(shù)23有什么關(guān)系?若將十字框上下左右平移,可框住另外5個數(shù),這5個數(shù)還有這種規(guī)律嗎?

(2)設(shè)十字框中中間的數(shù)為a,用含a的式子表示十字框中的其他四個數(shù);

(3)十字框中的5個數(shù)的和能等于2018嗎?若能,請寫出這5個數(shù);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是張亮、李娜兩位同學(xué)零花錢全學(xué)期各項支出的統(tǒng)計圖.根據(jù)統(tǒng)計圖,下列對兩位同學(xué)購買書籍支出占全學(xué)期總支出的百分比作出的判斷中,正確的是(

A. 張亮的百分比比李娜的百分比大 B. 張娜的百分比比張亮的百分比大

C. 張亮的百分比與李娜的百分比一樣大 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是某校七年級小朋友小敏這學(xué)期第一周和第二周做家務(wù)事的時間統(tǒng)計表,已知小敏每次在做家務(wù)事中洗碗的時間相同,掃地的時間也相同.

每周做家務(wù)總時間(分)

洗碗次數(shù)

掃地的次數(shù)

第一周

44

2

3

第二周

42

1

4

(1)求小敏每次洗碗的時間和掃地的時間各是多少?

(2)為鼓勵小敏做家務(wù),小敏的家長準(zhǔn)備洗碗一次付12元,掃地一次付8元,總費用不超過100元。請問小敏如何安排洗碗與掃地的次數(shù),既能夠讓花費的總時間最少,又能夠全部拿到100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,ABCD,D=90°,BE平分∠ABC,交CD于點E,F(xiàn)AB的中點,聯(lián)結(jié)AE、EF,且AEBE.

求證:(1)四邊形BCEF是菱形;

(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點C與點F重合時停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時間為標(biāo)準(zhǔn)分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).

請根據(jù)以上信息,解答下列問題:

(1)該汽車交易市場去年共交易二手轎車   輛.

(2)把這幅條形統(tǒng)計圖補充完整.(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù))

(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數(shù)所對應(yīng)扇形的圓心角為   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點是反比例函數(shù)的圖象上一點過點軸于點,連結(jié)的面積為.

1)求的值.

2)直線的延長線交于點,與反比例函數(shù)圖象交于點.

①若,求點坐標(biāo);②若點到直線的距離等于,求的值.

查看答案和解析>>

同步練習(xí)冊答案