【題目】一次函數(shù) y kx b k 0的圖象與反比例函數(shù) y m 0的圖象交于 A (-1,-1),B (n,2)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)點(diǎn) P 在 x 軸上,過點(diǎn) P 做垂直于 x 軸的直線 l,交直線 AB 于點(diǎn) C,若AB=2AC,請直接寫出點(diǎn) C 的坐標(biāo).
【答案】(1),y=2x+1; (2)C(, )或( , )
【解析】
(1)把A的坐標(biāo)代入求出m即可得出反比例函數(shù)的解析式;把B的坐標(biāo)代入求出n,代入求出一次函數(shù)的解析式即可;
(2)分類討論:當(dāng)C在AB中點(diǎn)時(shí),按坐標(biāo)中點(diǎn)公式即可求出C坐標(biāo);當(dāng)C在線段BA延長線時(shí),根據(jù)坐標(biāo)的相似變換(相似比為)即可求出,
(1)∵反比例函數(shù)圖象過 A(-1,-1)點(diǎn),
∴m=1,
∴,
∵ 反比例函數(shù)圖象過 B(n, 2)點(diǎn),
∴ 2n = 1,
∴n=,
∴B點(diǎn)坐標(biāo)為(,2);
∵一次函數(shù)圖象過 A(-1,-1)、B (,2)兩點(diǎn),
∴ ,
解得: ,
∴y=2x+1
(2)①如圖,當(dāng)B在AC之間時(shí),
因?yàn)?/span>AB=2AC,即C為中點(diǎn),設(shè)C(x,y),,
∴
即C為( , );
②如圖,當(dāng)點(diǎn)C在線段BA延長線時(shí),因?yàn)?/span>AB=2AC,,
∴ ,
∴ ,
即:C點(diǎn)為(, )
綜上所述,C(, )或( , ),
故答案為C(, )或( , ),
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與x軸相交于A、B兩點(diǎn),與y軸交于C,頂點(diǎn)為D,拋物線的對稱軸DF與BC相交于點(diǎn)E,與x軸相交于點(diǎn)F.
(1)求線段DE的長;
(2)設(shè)過E的直線與拋物線相交于M(x1,y1),N(x2,y2),試判斷當(dāng)|x1﹣x2|的值最小時(shí),直線MN與x軸的位置關(guān)系,并說明理由;
(3)設(shè)P為x軸上的一點(diǎn),∠DAO+∠DPO=∠α,當(dāng)tan∠α=4時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產(chǎn)任務(wù),安排甲、乙兩個(gè)大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨(dú)立完成60萬只口罩的生產(chǎn)任務(wù)時(shí),甲廠比乙廠少用5天.問至少應(yīng)安排兩個(gè)工廠工作多少天才能完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出如下定義:對于⊙O的弦MN和⊙O外一點(diǎn)P(M,O,N三點(diǎn)不共線,且點(diǎn)P,O在直線MN的異側(cè)),當(dāng)∠MPN+∠MON=180°時(shí),則稱點(diǎn)P是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).圖1是點(diǎn)P為線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的示意圖.
在平面直角坐標(biāo)系xOy中,⊙O的半徑為1.
(1)如圖2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三點(diǎn)中,是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的是 ;
(2)如圖3,M(0,1),N(,﹣),點(diǎn)D是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).
①∠MDN的大小為 ;
②在第一象限內(nèi)有一點(diǎn)E(m,m),點(diǎn)E是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn),判斷△MNE的形狀,并直接寫出點(diǎn)E的坐標(biāo);
③點(diǎn)F在直線y=﹣x+2上,當(dāng)∠MFN≥∠MDN時(shí),求點(diǎn)F的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中,P 是 BA 延長線上一點(diǎn),且PDA (0 45).點(diǎn) A,點(diǎn) E 關(guān)于 DP 對稱,連接 ED,EP ,并延長 EP 交射線CB 于點(diǎn) F ,連接 DF .
(1)請按照題目要求補(bǔ)全圖形.
(2)求證:∠EDF=∠CDF
(3)求∠EDF(含有 的式子表示);
(4)過 P 做PH⊥DP交 DF 于點(diǎn) H ,連接 BH , 猜想 AP 與 BH 的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別為AB,AC的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°,得到△CFE,連接AF,CD.
(1)四邊形ADCF是什么特殊的四邊形?說明理由;
(2)若BC=8,AC=6,求四邊形ABCF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是某品牌訂書機(jī),其截面示意圖如圖2所示.訂書釘放置在軌槽CD內(nèi)的MD處,由連接彈簧的推動器MN推緊,連桿EP一端固定在壓柄CF上的點(diǎn)E處,另一端P在DM上移動.當(dāng)點(diǎn)P與點(diǎn)M重合后,拉動壓柄CF會帶動推動器MN向點(diǎn)C移動.使用時(shí),壓柄CF的端點(diǎn)F與出釘口D重合,紙張放置在底座AB的合適位置下壓完成裝訂(即點(diǎn)D與點(diǎn)H重合).已知CA⊥AB,CA=2cm,AH=12cm,CE=5cm,EP=6cm,MN=2cm.
(1)求軌槽CD的長(結(jié)果精確到0.1);
(2)裝入訂書釘需打開壓柄FC,拉動推動器MN向點(diǎn)C移動,當(dāng)∠FCD=53°時(shí),能否在ND處裝入一段長為2.5cm的訂書釘?(參考數(shù)據(jù):≈2.24,≈6.08,sin53°≈0.80,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ABCD中,AE:EB=1:2.
(1)求△AEF與△CDF的周長比;
(2)如果S△AEF=6cm2,求S△CDF和S△ADF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com