【題目】滿足下列條件的△ABC不是直角三角形的是( )
A. BC=1,AC=2,AB= ; B. BC:AC:AB=3:4:5
C. ∠A+∠B=∠C D. ∠A:∠B:∠C=3:4:5
【答案】D
【解析】試題分析:根據(jù)勾股定理的逆定理可判定A、B,由三角形內(nèi)角和可判定C、D,可得:
A、當(dāng)BC=1,AC=2,AB=時,滿足BC2+AB2=1+3=4=AC2,所以△ABC為直角三角形;
B、當(dāng)BC:AC:AB=3:4:5時,設(shè)BC=3x,AC=4x,AB=5x,滿足BC2+AC2=AB2,所以△ABC為直角三角形;
C、當(dāng)∠A+∠B=∠C時,且∠A+∠B+∠C=90°,所以∠C=90°,所以△ABC為直角三角形;
D、當(dāng)∠A:∠B:∠C=3:4:5時,可設(shè)∠A=3x°,∠B=4x°,∠C=5x°,由三角形內(nèi)角和定理可得3x+4x+5x=180,解得x=15°,所以∠A=45°,∠B=60°,∠C=75°,所以△ABC為銳角三角形.故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若點(diǎn)A(﹣3,4)關(guān)于原點(diǎn)對稱點(diǎn)是B,則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了打造森林城市,樹立城市新地標(biāo),實(shí)現(xiàn)綠色、共享發(fā)展理念,在城南建起了“望月閣”及環(huán)閣公園.小亮、小芳等同學(xué)想用一些測量工具和所學(xué)的幾何知識測量“望月閣”的高度,來檢驗(yàn)自己掌握知識和運(yùn)用知識的能力.他們經(jīng)過觀察發(fā)現(xiàn),觀測點(diǎn)與“望月閣”底部間的距離不易測得,因此經(jīng)過研究需要兩次測量,于是他們首先用平面鏡進(jìn)行測量.方法如下:如圖,小芳在小亮和“望月閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標(biāo)記,這個標(biāo)記在直線BM上的對應(yīng)位置為點(diǎn)C,鏡子不動,小亮看著鏡面上的標(biāo)記,他來回走動,走到點(diǎn)D時,看到“望月閣”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時,測得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽光下,他們用測影長的方法進(jìn)行了第二次測量,方法如下:如圖,小亮從D點(diǎn)沿DM方向走了16米,到達(dá)“望月閣”影子的末端F點(diǎn)處,此時,測得小亮身高FG的影長FH=2.5米,F(xiàn)G=1.65米.
如圖,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計(jì),請你根據(jù)題中提供的相關(guān)信息,求出“望月閣”的高AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】華盛印染廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品出廠價為30元,成本價為20元(不含污水處理部分費(fèi)用).在生產(chǎn)過程中,平均每生產(chǎn)1件產(chǎn)品就有0.5立方米污水排出,所以為了凈化環(huán)境,工廠設(shè)計(jì)了兩種對污水進(jìn)行處理的方案并準(zhǔn)備實(shí)施.
方案一:工廠污水先凈化處理后再排出,每處理1立方米污水所用的原料費(fèi)用為2元,并且每月排污設(shè)備損耗等其它各項(xiàng)開支為27000元.
方案二:將污水排放到污水處理廠統(tǒng)一處理,每處理1立方米污水需付8元排污費(fèi).
(1)若實(shí)施方案一,為了確保印染廠有利潤,則每月的產(chǎn)量應(yīng)該滿足怎樣的條件?
(2)你認(rèn)為該工廠應(yīng)如何選擇污水處理方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過點(diǎn)D作DE⊥AF,垂足為點(diǎn)E
(1)求證:DE=AB;
(2)以A為圓心,AB長為半徑作圓弧交AF于點(diǎn)G,若BF=FC=1,求扇形ABG的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC與BD相交于點(diǎn)O,CE∥BD,DE∥AC,AD=,DE=2,則四邊形OCED的面積( )
A. B.4 C. D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,8),B(4,0),AB的垂直平分線交y軸與點(diǎn)D,連接BD,M(a,1)為第一象限內(nèi)的點(diǎn)
(1)則D(____, ____),并求直線BD的解析式;
(2)當(dāng)時,求a的值;
(3)點(diǎn)E為y軸上一個動點(diǎn),當(dāng)△CDE為等腰三角形時,求E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E是BC邊上一點(diǎn),只用一把無刻度的直尺在AD邊上作點(diǎn)F,使得DF=BE.
(1)作出滿足題意的點(diǎn)F,簡要說明你的作圖過程;
(2)依據(jù)你的作圖,證明:DF=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C這三個點(diǎn),請回答:
(1)A、B、C這三個點(diǎn)表示的數(shù)各是多少?
(2)A、B兩點(diǎn)間的距離是多少?A、C兩點(diǎn)間的距離是多少?
(3)若將點(diǎn)A向右移動4個單位后,則A、B、C這三個點(diǎn)所表示的數(shù)誰最大?最大的數(shù)比最小的數(shù)大多少?
(4)應(yīng)怎樣移動點(diǎn)B的位置,使點(diǎn)B到點(diǎn)A和點(diǎn)C的距離相等?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com