【題目】如圖,在中,AB=AC,AD平分∠BACBC于點(diǎn)D,在線段AD上任取一點(diǎn)P(點(diǎn)A除外),過(guò)點(diǎn)PEFAB.分別交ACBC于點(diǎn)E和點(diǎn)F,作PQAC,交AB于點(diǎn)Q,連接QE.

1)求證:四邊形AEPQ為菱形:

2)當(dāng)點(diǎn)P在線段EF上的什么位置時(shí),菱形AEPQ的面積為四邊形EFBQ面積的一半?請(qǐng)說(shuō)明理

【答案】(1)見(jiàn)解析;(2)PEF中點(diǎn)時(shí),S菱形AEPQ=12S四邊形EFBQ,理由見(jiàn)解析.

【解析】

1)先證出四邊形AEPQ為平行四邊形,關(guān)鍵是找一組鄰邊相等,由AD平分∠BACPEAQ可證∠EAP=EPA,得出AE=EP,即可得出結(jié)論;

2S菱形AEPQ=EPh,S平行四邊形EFBQ=EFh,若菱形AEPQ的面積為四邊形EFBQ面積的一半,則EP=EF,因此PEF中點(diǎn)時(shí),S菱形AEPQ=S四邊形EFBQ

(1)證明:∵EFAB,PQAC

∴四邊形AEPQ為平行四邊形.

AB=AC,AD平分∠CAB

∴∠CAD=BAD,

∵∠BAD=EPA,

∴∠CAD=EPA

EA=EP,

∴四邊形AEPQ為菱形.

(2)PEF中點(diǎn)時(shí),S菱形AEPQ=S四邊形EFBQ

∵四邊形AEPQ為菱形,

ADEQ,

ADBC,

EQBC,

又∵EFAB,

∴四邊形EFBQ為平行四邊形.

ENABN,如圖所示:

S菱形AEPQ=EPEN=EFEN=S四邊形EFBQ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高學(xué)生書(shū)寫(xiě)漢字的能力,增強(qiáng)保護(hù)漢子的意識(shí),某校舉辦了首屆漢字聽(tīng)寫(xiě)大賽,學(xué)生經(jīng)選拔后進(jìn)入決賽,測(cè)試同時(shí)聽(tīng)寫(xiě)100個(gè)漢字,每正確聽(tīng)寫(xiě)出一個(gè)漢字得1分,本次決賽,學(xué)生成績(jī)?yōu)?/span>(分),且,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:

組別

成績(jī)(分)

頻數(shù)(人數(shù))

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請(qǐng)根據(jù)表格提供的信息,解答以下問(wèn)題:

(1)本次決賽共有 名學(xué)生參加;

(2)直接寫(xiě)出表中a= ,b= ;

(3)請(qǐng)補(bǔ)全下面相應(yīng)的頻數(shù)分布直方圖;

(4)若決賽成績(jī)不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知中,厘米,、分別從點(diǎn)、點(diǎn)同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)的速度是1厘米/秒的速度,點(diǎn)的速度是2厘米/秒,當(dāng)點(diǎn)第一次到達(dá)點(diǎn)時(shí),同時(shí)停止運(yùn)動(dòng).

1、同時(shí)運(yùn)動(dòng)幾秒后,、兩點(diǎn)重合?

2、同時(shí)運(yùn)動(dòng)幾秒后,可得等邊三角形

3、邊上運(yùn)動(dòng)時(shí),能否得到以為底邊的等腰,如果存在,請(qǐng)求出此時(shí)、運(yùn)動(dòng)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD為平行四邊形,延長(zhǎng)AD到E,使DE=AD,連接EBEC,DB添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,平分,交于點(diǎn)E,平分,交于點(diǎn)F,交于點(diǎn)P,連結(jié),.

1)求證:四邊形是菱形.

2)若,,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是矩形ABCD的邊上一動(dòng)點(diǎn),矩形兩邊長(zhǎng)AB、BC長(zhǎng)分別為1520,那么P到矩形兩條對(duì)角線ACBD的距離之和是(  )

A.6B.12C.24D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根.

為正整數(shù),求此方程的根.

設(shè)此方程的兩個(gè)實(shí)數(shù)根為、,若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象過(guò)兩點(diǎn).

1)求直線的函數(shù)表達(dá)式

2)直線軸于點(diǎn)為直線上一動(dòng)點(diǎn)

①求的最小值;

是直線上任意一點(diǎn),為直線上另一動(dòng)點(diǎn),若是以為直角邊長(zhǎng)的等腰直角三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為x=,且經(jīng)過(guò)點(diǎn)(2,0),有下列說(shuō)法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2.上述說(shuō)法正確的是( )

A.①②④ B.③④ C.①③④ D.①②

查看答案和解析>>

同步練習(xí)冊(cè)答案