(2012•岳陽)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
2
x
的圖象交于A、B兩點(diǎn),過點(diǎn)作AC⊥x軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D,連接AO、BO,下列說法正確的是( 。
分析:求出兩函數(shù)式組成的方程組的解,即可得出A、B的坐標(biāo),即可判斷A;根據(jù)圖象的特點(diǎn)即可判斷B;根據(jù)A、B的坐標(biāo)和三角形的面積公式求出另三角形的面積,即可判斷C;根據(jù)圖形的特點(diǎn)即可判斷D.
解答:解:A、
y=x+1①
y=
2
x

∵把①代入②得:x+1=
2
x
,
解得:x2+x-2=0,
(x+2)(x-1)=0,
x1=-2,x2=1,
代入①得:y1=-1,y2=2,
∴B(-2,-1),A(1,2),
∴A、B不關(guān)于原點(diǎn)對(duì)稱,故本選項(xiàng)錯(cuò)誤;
B、當(dāng)-2<x<0或x>1時(shí),y1>y2,故本選項(xiàng)錯(cuò)誤;
C、∵S△AOC=
1
2
×1×2=1,S△BOD=
1
2
×|-2|×|-1|=1,
∴S△BOD=S△AOC,故本選項(xiàng)正確;
D、當(dāng)x>0時(shí),y1隨x的增大而增大,y2隨x的增大而減小,故本選項(xiàng)錯(cuò)誤;
故選C.
點(diǎn)評(píng):本題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題的應(yīng)用,主要考查學(xué)生觀察圖象的能力,能把圖象的特點(diǎn)和語言有機(jī)結(jié)合起來是解此題的關(guān)鍵,題目比較典型,是一道具有一定代表性的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•岳陽)如圖,兩個(gè)邊長(zhǎng)相等的正方形ABCD和EFGH,正方形EFGH的頂點(diǎn)E固定在正方形ABCD的對(duì)稱中心位置,正方形EFGH繞點(diǎn)E順時(shí)針方向旋轉(zhuǎn),設(shè)它們重疊部分的面積為S,旋轉(zhuǎn)的角度為θ,S與θ的函數(shù)關(guān)系的大致圖象是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•岳陽)如圖,在Rt△ABC中,∠B=90°,沿AD折疊,使點(diǎn)B落在斜邊AC上,若AB=3,BC=4,則BD=
3
2
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•岳陽)如圖,是由6個(gè)棱長(zhǎng)為1個(gè)單位的正方體擺放而成的,將正方體A向右平移2個(gè)單位,向后平移1個(gè)單位后,所得幾何體的視圖( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•岳陽)如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,對(duì)于下列結(jié)論:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=
1
2
CD•OA;⑤∠DOC=90°,其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•岳陽)如圖,△ABC中,AB=AC,D是AB上的一點(diǎn),且AD=
23
AB,DF∥BC,E為BD的中點(diǎn).若EF⊥AC,BC=6,則四邊形DBCF的面積為
15
15

查看答案和解析>>

同步練習(xí)冊(cè)答案