【題目】如圖,一個點在第一象限及x軸、y軸上運動,且每秒移動一個單位,在第1秒鐘,它從原點運動到(0,1),然后接著按圖中箭頭所示方向運動[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第35秒時質(zhì)點所在位置的坐標是(
A.(4,0)
B.(0,5)
C.(5,0)
D.(5,5)

【答案】C
【解析】解:由題意可知質(zhì)點移動的速度是1個單位長度/每秒, 到達(1,0)時用了3秒,到達(2,0)時用了4秒,
從(2,0)到(0,2)有四個單位長度,則到達(0,2)時用了4+4=8秒,到(0,3)時用了9秒;
從(0,3)到(3,0)有六個單位長度,則到(3,0)時用9+6=15秒;
依此類推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(5,0)用25+10=35秒.
故第35秒時質(zhì)點到達的位置為(5,0),
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是(
A.m≤2或m≥3
B.m≤3或m≥4
C.2<m<3
D.3<m<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,以邊上AC上一點O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點D,并與邊AC相交于另一點F.
(1)求證:BD是⊙O的切線;
(2)若BC=2 ,E是半圓 上一動點,連接AE、AD、DE. 填空:
①當 的長度是時,四邊形ABDE是菱形;
②當 的長度是時,△ADE是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為△ABC的BC邊上的中線,沿AD將△ACD折疊,C的對應(yīng)點為C′,已知∠ADC=45°,BC=6,那么點B與C′的距離為(
A.3
B.3
C.3
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)40°得到△A1B1C1 , AB與A1C1相交于點D,A1C1、BC1與AC分別交于點E、F.
(1)求證:△BCF≌△BA1D;
(2)當∠C=40°時,請你證明四邊形A1BCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知P為正方形ABCD的對角線AC上一點(不與A、C重合),PE⊥BC于點E,PF⊥CD于點F.
(1)求證:BP=DP;
(2)如圖2,若四邊形PECF繞點C按逆時針方向旋轉(zhuǎn),在旋轉(zhuǎn)過程中是否總有BP=DP?若是,請給予證明;若不是,請用反例加以說明;
(3)試選取正方形ABCD的兩個頂點,分別與四邊形PECF的兩個頂點連接,使得到的兩條線段在四邊形PECF繞點C按逆時針方向旋轉(zhuǎn)的過程中長度始終相等,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的正方形ABCD內(nèi)接于點O,點E是 上的一動點(不與A、B重合),點F是 上的一點,連接OE、OF,分別與AB、BC交于點G,H,且∠EOF=90°,有以下結(jié)論,其中正確的個數(shù)是( ). ① = ; ②△OGH是等腰三角形; ③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+ .


A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠A=60°,以點B為圓心的圓與AD、DC相切,與AB、CB的延長線分別相交于點E,F(xiàn),則圖中陰影部分的面積為

查看答案和解析>>

同步練習(xí)冊答案