【題目】計算

1 4a3b-6a2b2+12ab3÷2ab

2 a3·a4·a+(a2)4+(-2a4)2

3

4

5

【答案】12a2-3ab+6b2;(26a8;(33x2-4xy-5y2;(4x2-11x+6;(5

【解析】

1)根據(jù)多項式除以單項式法則計算可得;
2)根據(jù)先根據(jù)同底數(shù)冪乘法、冪的乘方、積的乘方法則計算;再合并同類項即可;
3)根據(jù)先利用平方差公式和完全平方公式計算,再進行加減運算可得.

4)根據(jù)單項式、多項式乘以多項式的運算法則計算可得;

5)原式先利用零指數(shù)冪、負整數(shù)指數(shù)冪等法則計算乘方運算,再有理數(shù)加減運算即可得到結果;

解:(1 4a3b-6a2b2+12ab3÷2ab,

=2a2-3ab+6b2;

2 a3·a4·a+(a2)4+(-2a4)2

=,

=

=;

3 ,

=,

=,

=;

4,

=

=,

=

5

=1-+9-4

=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理如圖1,在平面內選一定點O,引一條有方向的射線Ox,再選定一個單位長度,那么平面上任一點M的位置可由∠MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(θ,m)稱為M點的“極坐標”,這樣建立的坐標系稱為“極坐標系”。應用:在圖2的極坐標系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點C的極坐標應記為___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是正方形ABCD對角線AC上一點,EFAB,EGBC,垂足分別為E,F,若正方形ABCD的周長是40 cm.

(1)求證:四邊形BFEG是矩形;

(2)求四邊形EFBG的周長;

(3)AF的長為多少時,四邊形BFEG是正方形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小強作出邊長為1的第1個等邊A1B1C1,計算器面積為S1,然后分別取A1B1C1三邊的中點A2B2、C1,作出第2個等邊A2B2C2,計算其面積為S2,用同樣的方法,作出第3個等邊A3B3C3,計算其面積為S3,按此規(guī)律進行下去,,由此可得,第20個等邊A20B20C20的面積S20=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是計算機中的一種益智小游戲掃雷的畫面,在一個的小方格的正方形 雷區(qū)中,隨機埋藏著顆地雷,每個小方格內最多只能埋藏顆地雷。小紅在游戲開始時首先隨機的點擊一個方格,該方格中出現(xiàn)了數(shù)字,其意義表示該格的外圍區(qū)域(圖中陰影部分,記為區(qū)域)有顆地雷;接著小紅又點擊了左上角第一個方格,出現(xiàn)了數(shù)字,其外圍區(qū)域(圖中陰影)記為區(qū)域;區(qū)域與區(qū)域以及出現(xiàn)數(shù)字兩格以外的部分記為區(qū)域。請分別計算出區(qū)、區(qū)、區(qū)點中地雷的概率,那么她應點擊、、中的哪個區(qū)域?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初二年級教師對試卷講評課中學生參與的深度與廣度進行評價調查,其評價項目為主動質疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初二學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

(1)在這次評價中,一共抽查了 名學生;

(2)在扇形統(tǒng)計圖中,項目“主動質疑”所在的扇形的圓心角的度數(shù)為 度;

(3)請將頻數(shù)分布直方圖補充完整;

(4)如果全市有6000名初二學生,那么在試卷評講課中,“獨立思考”的初二學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A,B,C,D均在O上,CD為ACE的角平分線.

(1)求證:ABD為等腰三角形;

(2)若DCE=45°,BD=6,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,

(1)請寫出頂點在第一象限內的坐標;

(2)若把向上平移個單位長度,再向右平移個單位長度得到,畫出平移后的圖形;

(3)求出的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1l2l3l4,相鄰兩條平行線間的距離都是1,正方形ABCD的四個頂點分別在四條直線上,則正方形ABCD的面積為

A. B. 5C. 3D.

查看答案和解析>>

同步練習冊答案