【題目】已知ab,c為非零的實(shí)數(shù),則的可能值的個(gè)數(shù)為(  )

A. 4 B. 5 C. 6 D. 7

【答案】A

【解析】a、bc三個(gè)數(shù)都是正數(shù)時(shí),a0ab0,ac0,bc0,原式=1+1+1+1=4;

ab、c中有兩個(gè)正數(shù)時(shí)設(shè)為a0,b0c0,ab0,ac0,bc0原式=1+111=0;

設(shè)為a0,b0,c0ab0,ac0bc0,原式=11+11=0

設(shè)為a0,b0c0,ab0ac0,bc0原式=﹣111+1=﹣2;

ab、c有一個(gè)正數(shù)時(shí),設(shè)為a0,b0,c0,ab0,ac0bc0,原式=111+1=0

設(shè)為a0,b0,c0ab0,ac0bc0,原式=﹣11+11=﹣2

設(shè)為a0,b0,c0,ab0ac0,bc0,原式=﹣1+111=﹣2;

a、b、c三個(gè)數(shù)都是負(fù)數(shù)時(shí),a0,b0,c0,ab0ac0,bc0,原式=﹣1+1+1+1=2

綜上所述 的可能值的個(gè)數(shù)為4

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小英同時(shí)擲甲、乙兩枚質(zhì)地均勻的正方體骰子.記甲骰子朝上一面的數(shù)字為x,乙骰子朝上一面的數(shù)字為y,這樣就確定點(diǎn)P的一個(gè)坐標(biāo)(xy),那么點(diǎn)P落在雙曲線y上的概率為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,點(diǎn)M,N分別是射線OA,OB上的動(dòng)點(diǎn),OP平分∠AOB,OP=6,△PMN的周長最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程3x60的解的相反數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCDDE是∠ADC的角平分線,交BC于點(diǎn)E

1求證:CD=CE;

2)若BE=CE,求證:AEDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,有一個(gè)等腰直角三角形AOB,∠OAB=90°,直角邊AOx軸上AO=1.將Rt△AOB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,A1O=2AO,再將Rt△A1OB1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰三角形A2OB2,A2O=2A1O……依此規(guī)律,得到等腰直角三角形A2 017OB2 017則點(diǎn)B2 017的坐標(biāo)( 。

A. (22 017,-22 017 B. (22 016,-22 016 C. (22 017,22 017 D. (22 016,22 016

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從去年發(fā)生非洲豬瘟以來,各地豬肉緊缺,價(jià)格一再飆升,為平穩(wěn)肉價(jià),某物流公司受命將300噸豬肉運(yùn)往某地,現(xiàn)有A,B兩種型號(hào)的車共19輛可供調(diào)用,已知A型車每輛可裝20噸,B型車每輛可裝15噸.在不超載的條件下,19輛車恰好把300噸豬肉一次運(yùn)完,則需AB型車各多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1 ∠2,∠B ∠C,可推得AB∥CD.理由如下:

∵∠1 ∠2(已知),

∠1 ∠CGD______________ _________),

∴∠2 ∠CGD(等量代換).

∴CE∥BF___________________ ________).

∴∠ ∠C__________________________).

∵∠B ∠C(已知),

∴∠ ∠B(等量代換).

∴AB∥CD________________________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形OABC的邊長為4,對角線相交于點(diǎn)P,拋物線L經(jīng)過O,P,A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系.

①直接寫出O,P,A三點(diǎn)坐標(biāo);

②求拋物線L的表達(dá)式;

(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

同步練習(xí)冊答案