【題目】如圖,已知∠1=3,CDEF,試說明∠1=4.請將過程填寫完整.

解:∵∠1=3

又∠2=3(_______),

∴∠1=____,

____________(_______),

又∵CDEF,

AB_____,

∴∠1=4(兩直線平行,同位角相等).

【答案】對頂角相等;∠2;AB;CD;同位角相等,兩直線平行;EF.

【解析】

求出∠1=2,根據(jù)平行線的判定推出ABCDEF,根據(jù)平行線的性質(zhì)得出即可.

解:∵∠1=3,
又∠2=3(對頂角相等),
∴∠1=2,
ABCD(同位角相等,兩直線平行),
又∵CDEF,
ABEF,
∴∠1=4(兩直線平行,同位角相等),
故答案為:對頂角相等;∠2;ABCD;同位角相等,兩直線平行;EF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,DCAE,AEBC邊上的中線,過點CCFAE,垂足為點F,過點BBDBCCF的延長線于點D.

(1)求證:ACCB; (2)AC12 cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已等腰RtABC中,∠BAC90°.點D從點B出發(fā)沿射線BC移動,以AD為腰作等腰RtADE,∠DAE90°.連接CE

(1)如圖,求證:△ACE≌△ABD;

(2)D運動時,∠BCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說明理由;

(3)AC,當CD1時,請直接寫出DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生開展跳繩比賽活動,每班派5名學生參加,按團體總分多少排列名次,統(tǒng)計發(fā)現(xiàn)成績最好的甲班和乙班總分相等,下表是甲班和乙班學生的比賽數(shù)據(jù)單位:個

選手

1

2

3

4

5

總計

甲班

100

98

105

94

103

500

乙班

99

100

95

109

97

500

此時有學生建議,可以通過考察數(shù)據(jù)中的其他信息作為參考,請解答下列問題:

求兩班比賽數(shù)據(jù)中的中位數(shù),以及方差;

請根據(jù)以上數(shù)據(jù),說明應(yīng)該定哪一個班為冠軍?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊 的邊 軸交于點 ,點 是反比例函數(shù) 圖像上一點,若 邊的三等分點時,則等邊 的邊長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,AM+BM+CM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.
(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;
(2)函數(shù)y=2x2-bx. ①若其不變長度為零,求b的值;
②若1≤b≤3,求其不變長度q的取值范圍;
(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1 , 將G1沿x=m翻折后得到的函數(shù)圖象記為G2 , 函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,G是正方形形ABCD的邊BC上一點,DE、BF分別垂直AG于點E、F,則圖中與△ABF相似的三角形有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知第三象限的點Px,y)滿足

1)求點P的坐標;

2)①點Px軸的距離為_______;

②把點P向右平移m個單位后得到P1,則點P1x軸的距離為______

查看答案和解析>>

同步練習冊答案