【題目】如圖,已知△ABC是等腰直角三角形,AB=AC,AD是斜邊的中線,E、F分別是AB、AC邊上的點(diǎn)且DE⊥DF.
(1)求證:△AED≌△CFD;
(2)若BE=8,CF=6,求△DEF的面積;
(3)若AB=a,AE=x,請(qǐng)用含x,a的代數(shù)式表示△DEF的面積S.
【答案】見(jiàn)解析
【解析】
(1)由△ABC是等腰直角三角形,AB=AC,AD是斜邊的中線,可得:AD=DC,∠EAD=∠C=45°,AD⊥BC即∠CDF+∠ADF=90°,又DE⊥DF,可得:∠EDA+∠ADF=90°,故∠EDA=∠CDF,從而可證:△AED≌△CFD;
(2)由(1)知:AE=CF,AF=BE,DE=DF,即△EDF為等腰直角三角形,在Rt△AEF中,運(yùn)用勾股定理可將EF的值求出,進(jìn)而可求出DE、DF的值,
(3),由,可解.
∵ABC是等腰直角三角形,AD是斜邊的中線,
∴AD=AC,EAD=C=45 ,ADBC,
∴CDF+ADF=90,
又DEDF, ∴EDA+ADF=90,故EDA=CDF,
在AED和CFD中 ,
∴△AED≌△CFD .
(2)由(1)知:AE=CF,AF=BE,DE=DF,即△EDF為等腰直角三角形,在Rt△AEF中,EF=
∴DE2+DF2=102 ∴DE=DF=
∴ .
(3)AF=BE=a-x , AE=CF=x ,
DE2 == ,
∴EDF= DE2= = = .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB>∠ABC,三條內(nèi)角平分線AD,BE,CF相交于點(diǎn)I.
(1)若∠ABE=25°,求∠DIC的度數(shù);
(2)在(1)的條件下,圖中互余的角有多少對(duì)?列舉出來(lái);
(3)過(guò)I點(diǎn)作IH⊥BC,垂足為H,試問(wèn)∠BID與∠HIC相等嗎?為什么?
(4)G是AD延長(zhǎng)線上一點(diǎn),過(guò)G點(diǎn)作GP⊥BC,垂足為P,試探究∠G與∠ABC,∠ACB之間的數(shù)量關(guān)系,直接寫(xiě)出結(jié)論,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在的網(wǎng)格紙中,每個(gè)小正方形的邊長(zhǎng)都為1,動(dòng)點(diǎn)P、Q分別從點(diǎn)D、A同時(shí)出發(fā)向右移動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒1個(gè)單位,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng).
(1)請(qǐng)?jiān)?/span>的網(wǎng)格紙圖2中畫(huà)出運(yùn)動(dòng)時(shí)間t為2秒時(shí)的線段PQ并求其長(zhǎng)度;
(2)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,△PQB能否成為PQ=BQ的等腰三角形?若能,請(qǐng)求出相應(yīng)的運(yùn)動(dòng)時(shí)間t;若不能,請(qǐng)說(shuō)明理由;
(3)在(1)中的圖2中,點(diǎn)E如圖所示,是否在PQ上存在一點(diǎn)M,使DM+EM的值最小,如存在,求出DM+EM最小值;如不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)環(huán)境,某企業(yè)決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中每臺(tái)價(jià)格,月處理污水量極消耗費(fèi)如下表:
經(jīng)預(yù)算,該企業(yè)購(gòu)買(mǎi)設(shè)備的資金不高于105萬(wàn)元.
⑴ 請(qǐng)你為企業(yè)設(shè)計(jì)幾種購(gòu)買(mǎi)方案.
⑵ 若企業(yè)每月產(chǎn)生污水2040噸,為了節(jié)約資金,應(yīng)選那種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣2與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣2),OB=4OA,tan∠BCO=2.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)M、N分別是線段BC、AB上的動(dòng)點(diǎn),點(diǎn)M從點(diǎn)B出發(fā)以每秒個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)M、N中的一點(diǎn)到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)M作MP⊥x軸于點(diǎn)E,交拋物線于點(diǎn)P.設(shè)點(diǎn)M、點(diǎn)N的運(yùn)動(dòng)時(shí)間為t(s),當(dāng)t為多少時(shí),△PNE是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)將使結(jié)論成立的條件或理由填寫(xiě)在橫線上或括號(hào)內(nèi).
如圖,中,是邊的中點(diǎn),過(guò)點(diǎn)作 , 交的延長(zhǎng)線于點(diǎn).
求證:是的中點(diǎn).
證明: (已知)
是邊的中點(diǎn)
在和中
是的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖二次函數(shù)的圖象經(jīng)過(guò)和兩點(diǎn),且交軸于點(diǎn).
(1)試確定、的值;
(2)過(guò)點(diǎn)作軸交拋物線于點(diǎn)點(diǎn)為此拋物線的頂點(diǎn),試確定的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)邊長(zhǎng)為2的等邊△ABC的邊AB上點(diǎn)P作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com