精英家教網如圖,方格紙中每個小方格都是邊長為1的正方形,將其中的△ABC繞點D按順時針方向旋轉90°,得到對應△A′B′C′.
(1)請你在方格紙中畫出△A′B′C′;
(2)CC′的長度為
 
分析:(1)以D為旋轉中心,順時針旋轉90°得到關鍵點C,B,A的對應點即可;
(2)利用勾股定理求邊長為2的直角三角形的斜邊即可.
解答:解:(1)
精英家教網

(2)CC'=
22+22
=2
2
(注:此處寫
8
,不扣分).
點評:本題考查旋轉作圖,掌握畫圖的方法和圖形的特點是關鍵;求線段長一般應放在直角三角形中利用勾股定理求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中每個小方格都是邊長為1的正方形,我們把以格點連線為邊的多邊形稱為“格點多邊形”,如圖1中四邊形ABCD就是一個“格點四邊形”.
(1)求圖1中四邊形ABCD的面積;
(2)在圖2方格紙中畫一個格點三角形EFG,使△EFG的面積等于四邊形ABCD的面積且為軸對稱圖形.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中每個小正方形的邊長都是單位1.
(1)平移已知Rt△ABC,使直角頂點C與點O重合,畫出平移后的△A1OB1(A與A1對應)
(2)將平移后的三角形繞點O逆時針旋轉90°,畫出旋轉后的圖形.
(3)求旋轉過程中動點A1所經過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點在格點上,點B的坐標為(-4.-3).
(1)將△ABC向上平移5個單位,作出△A′B′C′,并寫出C′的坐標;
(2)在網格中以O為位似中心畫出△ABC的一個位似圖形△A″B″C″,且△ABC與△A″B″C″的位似比為1:2,并寫出B″的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中每個小方格都是邊長為1的正方形,
(1)在圖一中將其中的△ABC繞點D按順時針方向旋轉90°,得到對應△A'B'C'.
(a)請你在方格紙中畫出△A'B'C';(b)圖一中線段C C'的長度為
2
2
2
2

(2)在圖二中,以線段m為一邊畫菱形,要求菱形的頂點均在格點上(畫一個即可).
(3)在圖三中,平移a、b、c中的兩條線段(需標注字母),使它們與線段n構成以n為一邊的等腰直角三角形(畫一個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中每個小正方形的邊長都是單位1,△ABC和點S的位置如圖所示.
(1)將△ABC向右平移4個單位得到△A1B1C1,畫出平移后的圖形;
(2)將△ABC繞點S按順時針方向旋轉90°得到△A2B2C2,畫出旋轉后的圖形.

查看答案和解析>>

同步練習冊答案