【題目】某賓館客房部有60個房間供游客居住,當每個房間的定價為每天200元時,房間可以住滿.當每個房間每天的定價每增加10元時,就會有一個房間空閑.對有游客入住的房間,賓館需對每個房間每天支出20元的各種費用.

設每個房間每天的定價增加x元.求:

1)房間每天的入住量y(間)關于x(元)的函數(shù)關系式;

2)該賓館每天的房間收費z(元)關于x(元)的函數(shù)關系式;

3)該賓館客房部每天的利潤w(元)關于x(元)的函數(shù)關系式;當每個房間的定價為每天多少元時,w有最大值?最大值是多少?

【答案】1y=60-;(2z=-x2+40x+12000;(3w=-x2+42x+10800,當每個房間的定價為每天410元時,w有最大值,且最大值是15210元.

【解析】試題分析:(1)根據(jù)題意可得房間每天的入住量=60個房間﹣每個房間每天的定價增加的錢數(shù)÷10;

(2)已知每天定價增加為x元,則每天要(200+x)元.則賓館每天的房間收費=每天的實際定價×房間每天的入住量;

(3)支出費用為20×(60﹣),則利潤w=(200+x)(60﹣)﹣20×(60﹣),利用配方法化簡可求最大值.

試題解析:解:(1)由題意得:

y=60﹣

(2)p=(200+x)(60﹣)=﹣+40x+12000

(3)w=(200+x)(60﹣)﹣20×(60﹣

=﹣+42x+10800

=﹣x﹣210)2+15210

x=210時,w有最大值.

此時,x+200=410,就是說,當每個房間的定價為每天410元時,w有最大值,且最大值是15210元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司對用戶滿意度進行問卷調(diào)查,將連續(xù)6天內(nèi)每天收回的問卷數(shù)進行統(tǒng)計,繪制成如圖所示的統(tǒng)計圖.已知從左到右各矩形的高度比為2:3:4:6:4:1.第3天的頻數(shù)是12.請你回答:

(1)收回問卷最多的一天共收到問卷_________份;

(2)本次活動共收回問卷共_________份;

(3)市場部對收回的問卷統(tǒng)一進行了編號,通過電腦程序隨機抽選一個編號,抽到問卷是第4天收回的概率是多少?

(4)按照(3)中的模式隨機抽選若干編號,確定幸運用戶發(fā)放紀念獎,第4天和第6天分別有10份和2份獲獎,那么你認為這兩組中哪個組獲獎率較高?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在矩形ABCD中,點E在邊BC上,BE=2CE,將矩形沿著過點E的直線翻折后,點C、D分別落在邊BC下方的點C′、D′處,且點C′D′、B在同一條直線上,折痕與邊AD交于點F,D′FBE交于點G.設AB=t,那么EFG的周長為______(用含t的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把四張形狀大小完全相同的小正方形卡片(如圖1)不重疊地放在一個底面為長方形(長為mcm,寬為ncm)的盒子的底部(如圖2),盒子底面未被卡片覆蓋的部分用陰影表示.則圖2中兩塊陰影部分的周長和是(

A. 4mcmB. 4ncmC. 2(m+n)cmD. 4(mn)cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)

(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一棵樹CD10m高處的B點有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經(jīng)過的路程相等,試問這棵樹多高?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,EBC中點,AEBC于點E,AFCD于點F,CGAE,CGAF于點H,交AD于點G.

(1)求菱形ABCD的面積;(2)求∠CHA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,射線OPAE,∠AOP的角平分線交射線AE于點B

1)若∠A=50°,求∠ABO的度數(shù);

2)如圖2,若點C在射線AE上,OB平分∠AOCAE于點B,OD平分∠COPAE于點D,∠ABO-AOB=70°,求∠ADO的度數(shù);

3)如圖3,若∠A=α,依次作出∠AOP的角平分線OB,∠BOP的角平分線OB1,∠B1OP的角平分線OB2,,∠Bn-1OP的角平分線OBn,其中點B,B1,B2,Bn-1,Bn都在射線AE上,試求∠ABnO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(a,2)、B(2,b)都在雙曲線(x<0),PQ分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是,則k的值為(

A.-7B.-4C.3D.7

查看答案和解析>>

同步練習冊答案