【題目】如圖,已知EF、GH是四邊形ABCD四邊的中點(diǎn),則四邊形EFGH的形狀為_____;如四邊形ABCD的對角線AC BD的和為40,則四邊形EFGH的周長為________.

【答案】平行四邊形; 40

【解析】

利用三角形的中位線定理求出四邊形EFGH的兩組對邊相等,即可證得四邊形EFGH是平行四邊形,繼而即可求得EFGH的周長.

解:連接AC、BD,

∵EF、G、H分別為四邊形ABCD四邊的中點(diǎn),

∴EH=BD,FG=BD,HG=AC,EF=AC,

∴EH=FG,EF=HG

四邊形EFGH是平行四邊形.

四邊形EFGH的周長=EH+HG+FG+EF=×2×AC+×2×BD=AC+BD=40

故答案為:平行四邊形;40

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸交于,兩點(diǎn),與軸交于

1)求函數(shù)表達(dá)式;

2)點(diǎn)是線段中點(diǎn),點(diǎn)上方拋物線上一動點(diǎn),連接,.當(dāng)的面積最大時,過點(diǎn)軸垂線,垂足為,點(diǎn)為線段上一動點(diǎn),將繞點(diǎn)順時針方向旋轉(zhuǎn)90°,點(diǎn),的對應(yīng)點(diǎn)分別是,,,點(diǎn)從點(diǎn)出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動到點(diǎn)處,再沿運(yùn)動到點(diǎn)處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動到點(diǎn)處停止.求面積的最大值及點(diǎn)經(jīng)過的最短路徑的長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為的拋物線()經(jīng)過點(diǎn)軸上的點(diǎn),

1)求該拋物線的表達(dá)式;

2)聯(lián)結(jié),求;

3)將拋物線向上平移得到拋物線,拋物線軸分別交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),如果相似,求所有符合條件的拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在⊙O中,直徑MN10,正方形ABCD的四個頂點(diǎn)分別在⊙O及半徑OM、OP上,并且∠POM45°,求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)PAB下方的半圓上不與點(diǎn)AB重合的一個動點(diǎn),點(diǎn)CAP的中點(diǎn),連接CO并延長,交⊙O于點(diǎn)D,連接AD,過點(diǎn)D作⊙O的切線,交PB的延長線于點(diǎn)E,連接CE

1)求證:DACECP;

2)填空:

①當(dāng)∠DAP=______°時,四邊形DEPC為正方形;

②在點(diǎn) P的運(yùn)動過程中,若⊙O的直徑為10,tanDCE=,則AD=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李輝到服裝專賣店去做社會調(diào)查,了解到商店為了激勵營業(yè)員的工作積極性實行了“月總收入=基本工資+計件獎金”的方法,并獲得了如下信息:

營業(yè)員

嘉琪

嘉善

月銷售件數(shù)/

400

300

月總收入/

7800

6600

假設(shè)月銷售件數(shù)為x件,月總收入為y元,銷售每件獎勵a元,營業(yè)員月基本工資為b元.

1)求ab的值.

2)若營業(yè)員嘉善某月總收入不低于4200元,那么嘉善當(dāng)月至少要賣多少件衣服?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AC平分∠DAB,直線DCAB的延長線相交于點(diǎn)P,ADPC延長線垂直,垂足為點(diǎn)DCE平分∠ACB,交AB于點(diǎn)F,交⊙O于點(diǎn)E

1)求證:PC與⊙O相切;

2)求證:PCPF;

3)若AC8tanABC,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加班長競選,需進(jìn)行演講答辯與民主測評,民主測評時一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評委對小明“演講答辯”的評分統(tǒng)計圖及全班50位同學(xué)民主測評票數(shù)統(tǒng)計圖.

(1)求評委給小明演講答辯分?jǐn)?shù)的眾數(shù),以及民主測評為“良好”票數(shù)的扇形圓心角度數(shù);

(2)求小明的綜合得分是多少?

(3)在競選中,小亮的民主測評得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?

查看答案和解析>>

同步練習(xí)冊答案