【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,0),(5,0),(0,2).若點(diǎn)PA點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向B點(diǎn)移動(dòng),連接PC并延長(zhǎng)到點(diǎn)E,使CE=PC,將線段PE繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到線段PF,連接FB.若點(diǎn)P在移動(dòng)的過程中,使△PBF成為直角三角形,則點(diǎn)F的坐標(biāo)是________

【答案】(5,2),(,

【解析】

試題當(dāng)P位于線段OA上時(shí),顯然PFB不可能是直角三角形;由于∠BPFCPF=90°,所以P不可能是直角頂點(diǎn),可分兩種情況進(jìn)行討論:

F為直角頂點(diǎn),過FFDx軸于D,BP=6﹣tDP=2OC=4,在RtOCP中,OP=t﹣1,由勾股定理易求得CP=t2﹣2t+5,那么PF2=(2CP2=4(t2﹣2t+5);在RtPFB中,FDPB,由射影定理可求得PB=PF2÷PD=t2﹣2t+5,而PB的另一個(gè)表達(dá)式為:PB=6﹣t,聯(lián)立兩式可得t2﹣2t+5=6﹣t,即t=;

B為直角頂點(diǎn),那么此時(shí)的情況與(2)題類似,PFB∽△CPO,且相似比為2,那么BP=2OC=4,即OP=OBBP=1,此時(shí)t=2.

解:能;

①若F為直角頂點(diǎn),過FFDx軸于D,則BP=6﹣tDP=2OC=4,

RtOCP中,OP=t﹣1,

由勾股定理易求得CP2=t2﹣2t+5,那

PF2=(2CP2=4(t2﹣2t+5);

RtPFB中,FDPB,

由射影定理可求得PB=PF2÷PD=t2﹣2t+5,

PB的另一個(gè)表達(dá)式為:PB=6﹣t,

聯(lián)立兩式可得t2﹣2t+5=6﹣t,即t=

P點(diǎn)坐標(biāo)為(,0),

F點(diǎn)坐標(biāo)為:();

B為直角頂點(diǎn),那么此時(shí)的情況與(2)題類似,PFB∽△CPO,且相似比為2,

那么BP=2OC=4,即OP=OBBP=1,此時(shí)t=2,

P點(diǎn)坐標(biāo)為(1,0).FD=2(t﹣1)=2,

F點(diǎn)坐標(biāo)為(5,2).

故答案是:(5,2),(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在某次考試中,現(xiàn)有甲、乙、丙3名同學(xué),共四科測(cè)試實(shí)際成績(jī)?nèi)缦卤恚海▎挝唬悍郑?/span>

語文

數(shù)學(xué)

英語

科學(xué)

95

95

80

150

105

90

90

139

100

100

85

139

若欲從中表揚(yáng)2人,請(qǐng)你從平均數(shù)的角度分析,那兩人將被表揚(yáng)?

2)為了提現(xiàn)科學(xué)差異,參與測(cè)試的語文、數(shù)學(xué)、英語、科學(xué)實(shí)際成績(jī)須以2:3:2:3的比例計(jì)入折合平均數(shù),請(qǐng)你從折合平均數(shù)的角度分析,哪兩人將被表揚(yáng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD既是△ABC的中線,又是角平分線,請(qǐng)判斷:

(1)△ABC的形狀;

(2)AD是否過△ABC外接圓的圓心O,⊙O是否是△ABC的外接圓,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?

(3)過點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)的圖象交x軸于A(﹣2,0)和點(diǎn)B,交y軸負(fù)半軸于點(diǎn)C,拋物線對(duì)稱軸為x=﹣,下列結(jié)論中,錯(cuò)誤的結(jié)論是( 。

A. abc>0

B. 方程ax2+bx+c=0的解是x1=﹣2,x2=1

C. b2﹣4ac>0

D. a=b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寧波某公司經(jīng)銷一種綠茶,每千克成本為元.市場(chǎng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量(千克)隨銷售單價(jià)(元/千克)的變化而變化,具體關(guān)系式為:.設(shè)這種綠茶在這段時(shí)間內(nèi)的銷售利潤(rùn)為(元),解答下列問題:

(1)求的關(guān)系式;

(2)當(dāng)銷售單價(jià)取何值時(shí),銷售利潤(rùn)的值最大,最大值為多少?

(3)如果物價(jià)部門規(guī)定這種綠茶的銷售單價(jià)不得高于元/千克,公司想要在這段時(shí)間內(nèi)獲得元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x24x+12+m0

(1)若方程的一個(gè)根是,求m的值及方程的另一根;

(2)若方程的兩根恰為等腰三角形的兩腰,而這個(gè)三角形的底邊為m,求m的值及這個(gè)等腰三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,DAC上一點(diǎn),BEAC,BE=AD,AE分別交BD、BC于點(diǎn)F、G,且∠1=2.

(1)填空:圖中與△BEF全等的三角形是______,與△BEF相似的三角形是_____(不再添加任何輔助線);

(2)對(duì)(1)中的兩個(gè)結(jié)論選擇其中一個(gè)給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案