精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,△ABC和△DEC均為等腰三角形,且∠ACB=DCE=90°,連接BEAD,兩條線段所在的直線交于點P.

1)線段BEAD有何數量關系和位置關系,請說明理由.

2)若已知BC=12DC=5,△DEC繞點C順時針旋轉,

①如圖2,當點D恰好落在BC的延長線上時,求AP的長;

②在旋轉一周的過程中,設△PAB的面積為S,求S的最值.

【答案】(1)BE=AD,BEAD互相垂直,證明詳見解析;(2)①AP=;②最小47,最大72

【解析】

1)由題意根據等腰三角形的性質以及全等三角形的判定與性質,進行分析與等量代換即可;

2由題意根據解直角三角形的勾股定理以及相似三角形的判定與性質進行分析即可;

∠APB=90°可知點P在以AB為直徑的圓的一段弧上,且當BP與以CE為半徑⊙C相切時,點P在其運動路徑所在弧的兩個端點處,PAB的距離最小,此時△PAB的面積S最;當點P與點C重合時,PAB的距離最大,此時△PAB的面積S最大.

解:(1BE=AD,BEAD互相垂直;

證明:等腰△ABC,等腰Rt△DEC,

∴AC=BC,DC=EC∠ACB=∠DCE=90°,

∴∠ACD=∠BCE,

∴△ACD≌△BCE,

∴BE=AD,∠CAD=∠CBE,

∵∠CAD+∠APB=∠CBE+∠ACB=∠AOB

∴∠APB=∠ACB=90°,即BEAD互相垂直.

2①∵AB=BC=12,DC=EC=5,

∴AE=AC-EC=12-5=7,

Rt△BCE中,BE=,

由(1)同理可知∠APB=∠ACB=90°,∠CAD=∠CBE,

∴△APE∽△BCE,

,即,解得AP=.

∠APB=90°可知點P在以AB為直徑的圓的一段弧上,且當BP與以CE為半徑⊙C相切時,點P在其運動路徑所在弧的兩個端點處,PAB的距離最小,此時△PAB的面積S最小。如圖12,易知四邊形PDCE是邊長為5的正方形.

∴ BE=AD=,BP=BE+PE=,AP=AD-PD=,

∴S(最小值)=×AP×BP=

當點P與點C重合時,PAB的距離最大,此時△PAB的面積S最大,如圖3

S(最大值)=×AC×BC=×12×12=72.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點A1)在射線OM上,點B2)在射線ON上,以AB為直角邊作RtABA1,以BA1為直角邊作第二個RtBA1B1,然后以A1B1為直角邊作第三個RtA1B1A2,…,依次規(guī)律,得到RtB2019A2020B2020,則點B2020的縱坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著生活節(jié)奏的加快以及智能手機的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習慣.由此催生了一批外賣點餐平臺,已知某外賣平臺的送餐費用與送餐距離有關(該平臺只給5千米范圍內配送),為調査送餐員的送餐收入,現(xiàn)從該平臺隨機抽取80名點外賣的用戶進行統(tǒng)計,按送餐距離分類統(tǒng)計結果如下表:

送餐距離x(千米)

0x1

1x2

2x3

3x4

4x5

數量

12

20

24

16

8

1)從這80名點外賣的用戶中任取一名用戶,該用戶的送餐距離不超過3千米的概率為 ;

2)以這80名用戶送餐距離為樣本,同一組數據取該小組數據的中間值(例如第二小組(1x 2)的中間值是1.5),試估計利用該平臺點外賣用戶的平均送餐距離;

3)若該外賣平臺給送餐員的送餐費用與送餐距離有關,不超過2千米時,每份3元;超過2千米但不超4千米時,每份5元;超過4千米時,每份9元. 以給這80名用戶所需送餐費用的平均數為依據,若送餐員一天的目標收入不低于150元,試估計一天至少要送多少份外賣?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2bxc的對稱軸是x,小亮通過觀察得出了下面四條信息:①,②abc<0,③4a+2b+c>0,④2a+3b=0.你認為其中正確的有_________________

A.①②B.②④C.①③D.③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知點,,直線軸和軸分別交于點,,若拋物線與直線有兩個不同的交點,其中一個交點在線段上(包含,兩個端點),另一個交點在線段上(包含,兩個端點),則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了做好開學準備,某校共購買了20A、B兩種桶裝消毒液,進行校園消殺,以備開學.已知A種消毒液300/桶,每桶可供2 0002的面積進行消殺,B種消毒液200/桶,每桶可供1 0002的面積進行消殺.

1)設購買了A種消毒液x桶,購買消毒液的費用為y元,寫出yx之間的關系式,并指出自變量x的取值范圍;

2)在現(xiàn)有資金不超過5 300元的情況下,求可消殺的最大面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線,直線,在直線上取一點,使,以點為對稱中心,作點的對稱點,過點,交軸于點,作軸,交直線于點,得到四邊形;再以點為對稱中心,作點的對稱點,過點,交軸于點,作軸,交直線于點,得到四邊形;;按此規(guī)律作下去,則四邊形的面積是___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O是正方形ABCD邊上一點,以O為圓心,OB為半徑畫圓與AD交于點E,過點E作⊙O的切線交CDF,將△DEF沿EF對折,點D的對稱點D'恰好落在⊙O上.若AB6,則OB的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數的圖像與坐標軸交于A、B、C三點,其中點A的坐標為(0,8),點B的坐標為(-4,0.

1)求該二次函數的表達式及點C的坐標;

2)點D的坐標為(0,4),點F為該二次函數在第一象限內圖像上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設平行四邊形CDEF的面積為S.

①求S的最大值;

②在點F的運動過程中,當點E落在該二次函數圖像上時,請直接寫出此時S的值.

查看答案和解析>>

同步練習冊答案