【題目】如圖,正方形ABCD的邊長為1cm,AC是對角線,AE平分∠BAC,EF⊥AC于F.
(1)求證:BE=EF.
(2)求tan∠EAF的值.
【答案】
(1)證明:∵在正方形ABCD中,EF⊥AC,AB⊥BC,
∴∠AFE=∠ABE=90°;
∵AE平分∠BAC,
∴∠BAE=∠FAE;
又∵AE=AE,
∴Rt△BAE≌Rt△FAE,
故AB=AF,BE=FE
(2)解:∵正方形ABCD,
∴在Rt△CEF中,∠ECF=45°,
故FE=CF,
∴BE=CF,
∵正方形ABCD的邊長為1 cm,對角線AC= cm,
由(1)可得,BE=EF=CF=AC﹣AF=AC﹣AB= ﹣1(cm),
∴
【解析】(1)根據(jù)角平分線上的點到角兩邊的距離相等,可得BE=EF;(2)根據(jù)勾股定理,計算正方形的對角線的長,減去AF的長求得CF的長,最后計算tan∠EAF的值.
【考點精析】解答此題的關(guān)鍵在于理解角平分線的性質(zhì)定理的相關(guān)知識,掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上,以及對正方形的性質(zhì)的理解,了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】學習成為商城人的時尚,義烏市新圖書館的啟用,吸引了大批讀者.有關(guān)部門統(tǒng)計了2011年10月至2012年3月期間到市圖書館的讀者的職業(yè)分布情況,統(tǒng)計圖如下:
(1)在統(tǒng)計的這段時間內(nèi),共有萬人到市圖書館閱讀,其中商人所占百分比是 ,
(2)將條形統(tǒng)計圖補充完整(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑);
(3)若今年4月到市圖書館的讀者共28000名,估計其中約有多少名職工?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將等腰直角三角形ABC繞點A逆時針旋轉(zhuǎn)15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是邊長為1的正方形ABCD對角線AC上一動點(P與A、C不重合),點E在射線BC上,且PE=PB.設(shè)AP=x,△PBE的面積為y.則能夠正確反映y與x之間的函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.
(1)求梯子底端B外移距離BD的長度;
(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+ x+2與x軸交于點A,B,與y軸交于點C.點P是線段BC上的動點(點P不與B,C重合),連接并延長AP交拋物線于另一點Q,設(shè)點Q的橫坐標為x.
(1)①寫出點A,B,C的坐標:A(),B(),C();
②求證:△ABC是直角三角形;
(2)記△BCQ的面積為S,求S關(guān)于x的函數(shù)表達式;
(3)在點P的運動過程中, 是否存在最大值?若存在,求出 的最大值及點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到△ADE,此時點C恰好在線段DE上,若∠B=40°,∠CAE=60°,則∠DAC的度數(shù)為( )
A.15°
B.20°
C.25°
D.30°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com