【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a0)x軸相交于A(﹣1,0),B(3,0)兩點,點C為拋物線的頂點.點M(0,m)y軸上的動點,將拋物線繞點M旋轉180°,得到新的拋物線,其中B、C旋轉后的對應點分別記為B'C'

1)若a=1,求原拋物線的函數(shù)表達式;

2)在(1)條件下,當四邊形BCB'C'的面積為40時,求m的值;

3)探究a滿足什么條件時,存在點M,使得四邊形BCB'C'為菱形?請說明理由.

【答案】1;(2m=4m=﹣16;(3a時,存在點M,使得四邊形BCB'C'為菱形,理由見解析.

【解析】

1)根據(jù)原拋物線a=1,并且經(jīng)過,即可求出原拋物線的函數(shù)表達式;

2)在(1)條件下,連接、,延長,與軸交于點,證明四邊形是平行四邊形,面積為40,即可求的值;

3)過點軸于點,當平行四邊形為菱形時,應有,故點之間,當時,,得.由二次函數(shù)的頂點為,,可得,,,進而列出一元二次方程,根據(jù)判別式即可求出滿足的條件.

解:(1)拋物線a=1,并且經(jīng)過,,題意得:,

解得,

原拋物線的函數(shù)表達式為:;

2)連接,延長,與軸交于點,

二次函數(shù)的頂點為,

,

直線的解析式為:

,

拋物線繞點旋轉

,,

四邊形是平行四邊形,

,

,

3)如圖,過點軸于點,

當平行四邊形為菱形時,應有,故點、之間,

時,,

,

二次函數(shù)的頂點為,,,

,,,,

,

,

,,

所以時,存在點,使得四邊形為菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點(頂點是網(wǎng)格線的交點)和直線l及點O.

1)畫出關于直線l對稱的

2)連接OA,將OA繞點O順時針旋轉,畫出旋轉后的線段;

3)在旋轉過程中,當OA有交點時,旋轉角的取值范圍為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在一筆直的海岸線上有A,B兩個觀測站,AB的正東方向,有一艘小船停在點P,A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.

(1)A、B兩觀測站之間的距離;

(2)小船從點P處沿射線AP的方向前行求觀測站B與小船的最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著中國傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場決定開展歡度端午,回饋顧客的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學的一個數(shù)學興趣小組在本校學生中開展了主題為霧霾知多少的專題調查括動,采取隨機抽樣的方式進行問卷調查,問卷調查的結果分為A.非常了解、B.比較了解、C.基本了解、D.不太了解四個等級,將所得數(shù)據(jù)進行整理后,繪制成如下兩幅不完整的統(tǒng)計圖表,請你結合圖表中的信息解答下列問題

等級

A

B

C

D

頻數(shù)

40

120

36

n

頻率

0.2

m

0.18

0.02

1)表中m   ,n   ;

2)扇形統(tǒng)計圖中,A部分所對應的扇形的圓心角是   °,所抽取學生對丁霧霾了解程度的眾數(shù)是   

3)若該校共有學生1500人,請根據(jù)調查結果估計這些學生中比較了解人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學在百貨商場購進了A、B兩種品牌的籃球,購買A品牌藍球花費了2400元,購買B品牌藍球花費了1950元,且購買A品牌藍球數(shù)量是購買B品牌藍球數(shù)量的2倍,已知購買一個B品牌藍球比購買一個A品牌藍球多花50元.

(1)求購買一個A品牌、一個B品牌的藍球各需多少元?

(2)該學校決定再次購進A、B兩種品牌藍球共30個,恰逢百貨商場對兩種品牌藍球的售價進行調整,A品牌藍球售價比第一次購買時提高了10%,B品牌藍球按第一次購買時售價的9折出售,如果這所中學此次購買A、B兩種品牌藍球的總費用不超過3200元,那么該學校此次最多可購買多少個B品牌藍球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖①,②,在矩形ABCD中,AB=4,BC=8,P,Q分別是邊BC,CD上的點.

(1)如圖①,若APPQ,BP=2,求CQ的長;

(2)如圖②,若=2,且EF,G分別為AP,PQPC的中點,求四邊形EPGF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市計劃經(jīng)銷一些特產(chǎn),經(jīng)銷前,圍繞“A:王高虎頭雞,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鴨蛋”四種特產(chǎn),在全市范圍內隨機抽取了部分市民進行問卷調查:“我最喜歡的特產(chǎn)是什么?”(必選且只選一種).現(xiàn)將調查結果整理后,繪制成如圖所示的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.

(1)請補全扇形統(tǒng)計圖和條形統(tǒng)計圖;

(2)若全市有110萬市民,估計全市最喜歡“羊口咸蟹子”的市民約有多少萬人?

(3)在一個不透明的口袋中有四個分別寫上四種特產(chǎn)標記A、B、C、D的小球(除標記外完全相同),隨機摸出一個小球然后放回,混合搖勻后,再隨機摸出一個小球,則兩次都摸到A的概率是多少?寫出分析計算過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動:在四等分的圓形轉盤上依次標有“0元”、“10元”、“30元”、“50元”字樣,購物每滿300元可以轉動轉盤2次,每次轉盤停下后,顧客可以獲得指針所指區(qū)域相應金額的購物券(指針落在分界線上不計次數(shù),需要再次轉動轉盤一次,直到指針沒有落在分界線上),一個顧客剛好消費300元,并參加促銷活動,轉了2次轉盤.

1)請你用畫樹形圖法或列表法,求出該顧客兩次獲得購物券金額和的所有可能結果;

2)求出該顧客兩次獲得購物金額和不低于50元的概率.

查看答案和解析>>

同步練習冊答案