【題目】正方形ABCD中,點(diǎn)E、F分別是邊AD、AB的中點(diǎn)連接EF.

(1)如圖1,若點(diǎn)G是邊BC的中點(diǎn),連接FG,則EF與FG關(guān)系為   

(2)如圖2,若點(diǎn)P為BC延長線上一動點(diǎn),連接FP,將線段FP以點(diǎn)F為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)900得到線段FQ,連接EQ,請猜想EF、EQ、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)若點(diǎn)P為CB延長線上一動點(diǎn)按照(2)中的作法,在圖3中補(bǔ)全圖形并直接寫出EF、EQ、BP三者之間的數(shù)量關(guān)系    .

【答案】解:(1)垂直且相等。

(2)EF、EQ、BP三者之間的數(shù)量關(guān)系為。

證明如下:

如圖,取BC的中點(diǎn)G,連接FG,

由(1)得EF=FG,EFFG,

根據(jù)旋轉(zhuǎn)的性質(zhì),F(xiàn)P=FQ,PFQ =90°。

∴∠GFP=GFE—EFP=90°—EFP,

EFQ=PFQ—EFP=90°—EFP。

∴∠GFP=EFQ。

FQE和FPG中,EF=GF,EFQ=GFP,F(xiàn)Q = FP,

FQE≌△FPG(SAS)。EQ=GP

。

(3)補(bǔ)圖如下,F(xiàn)、EQ、BP三者之間的數(shù)量關(guān)系為:。

【解析】

試題分析:(1)EF與FG關(guān)系為垂直且相等(EF=FG且EFFG)。證明如下:

點(diǎn)E、F、G分別是正方形邊AD、AB、BC的中點(diǎn),

∴△AEF和BGD是兩個全等的等腰直角三角形。

EF=FG,AFE=BFG=45°。∴∠EFG=90°,即EFFG。

(2)取BC的中點(diǎn)G,連接FG,則由SAS易證FQE≌△FPG,從而EQ=GP,因此。

(3)同(2)可證FQE≌△FPG(SAS),得EQ=GP,因此,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各點(diǎn)中,在第四象限的點(diǎn)是(
A.(2,4)
B.(2,﹣4)
C.(﹣2,4)
D.(﹣2,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BE=CF,AB∥CD,AB=CD.求證:AF∥DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x=2是方程x2+x﹣a=0的一個根,則a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了“讀好書,助成長”系列活動,并準(zhǔn)備購置一批圖書,購書前 ,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,根據(jù)統(tǒng)計圖所提供的信息,回答下列問題:

(1)本次調(diào)查共抽查了 名學(xué)生,兩幅統(tǒng)計圖中的m= ,n= .

(2)已知該校共有960名學(xué)生,請估計該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?

(3)學(xué)校要舉辦讀書知識競賽,七年(1)班要在班級優(yōu)勝者2男1女中隨機(jī)選送2人參賽,求選送的兩名參賽學(xué)生為1男1女的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】y(m1)x|m|3m表示一次函數(shù),則m等于(  )

A. 1 B. 1 C. 0或-1 D. 1或-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)李明每月獲得利潤為w(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?

(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?

(3)根據(jù)物價部門規(guī)定,這種護(hù)眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地區(qū)3500名初中畢業(yè)生的數(shù)學(xué)成績,從中抽出20本試卷,每本30份,其中個體是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,∠MON=90°,點(diǎn)A、B分別在OM、ON上運(yùn)動(不與點(diǎn)O重合).
(1)若BC是∠ABN的平分線,BC的反方向延長線與∠BAO的平分線交與點(diǎn)D. ①若∠BAO=60°,則∠D=°.
②猜想:∠D的度數(shù)是否隨A,B的移動發(fā)生變化?并說明理由
(2)若∠ABC= ∠ABN,∠BAD= ∠BAO,則∠D=°.
(3)若將“∠MON=90°”改為“∠MON=α(0°<α<180°)”,∠ABC= ∠ABN,∠BAD= ∠BAO,其余條件不變,則∠D=°(用含α、n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊答案