【題目】如圖,在△ABC中,∠B=90°,BC=8 AB=6cm,動點P從點A開始沿邊AB向點B以1cm/s的速度移動,動點Q從點B開始沿邊BC向點C以2cm/s的速度移動.若P,Q兩點分別從A,B兩點同時出發(fā),在運動過程中,△PBQ的最大面積是(   )

A. 18cm2 B. 12cm2 C. 9cm2 D. 3cm2

【答案】C

【解析】試題分析:先根據(jù)已知求邊長BC,再根據(jù)點PQ的速度表示BPBQ的長,設△PBQ的面積為S,利用直角三角形的面積公式列關于St的函數(shù)關系式,并求最值即可.

∵tan∠C=,AB=6cm, =∴BC=8,

由題意得:AP=tBP=6﹣t,BQ=2t,

△PBQ的面積為S,則S=×BP×BQ=×2t×6﹣t),

S=﹣t2+6t=﹣t2﹣6t+9﹣9=﹣t﹣32+9, P0≤t≤6,Q0≤t≤4,

t=3時,S有最大值為9, 即當t=3時,△PBQ的最大面積為9cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結DE交CO于點P,給出以下結論:

①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我省教育廳下發(fā)了《在全省中小學幼兒園廣泛深入開展節(jié)約教育》的通知,通知中要求各學校全面持續(xù)開展“光盤行動”.某市教育局督導檢查組為了調查學生對“節(jié)約教育”內容的了解程度(程度分為:“A—了解很多”,“B—了解較多”,“C—了解較少”,“D—不了解”),對本市一所中學的學生進行了抽樣調查,我們將這次調查的結果繪制成以下兩幅統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)本次抽樣調查了多少名學生?

(2)補全兩幅統(tǒng)計圖;

(3)若該中學共有1 800名學生,請你估計這所中學的所有學生中,對“節(jié)約教育”內容“了解較多”的有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】命題:“三角形中至多有兩個角大于60度”,用反證法第一步需要假設

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AB=AC,求證:∠B<90°,用反證法證明:第一步是:假設

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要證明一個三角形中不可能有兩個鈍角,采用的方法是 ,應先假設

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請用反證法證明:如果兩個整數(shù)的積是偶數(shù),那么這兩個整數(shù)中至少有一個是偶數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,AF=DE.

求證:(1)△ABF≌△DCE;

(2)四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解關于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是( 。

A. (x﹣1)2=4 B. (x+1)2=4 C. (x﹣1)2=16 D. (x+1)2=16

查看答案和解析>>

同步練習冊答案