【題目】安徽郎溪農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè).他準(zhǔn)備用長(zhǎng)的木欄圍一個(gè)矩形的羊圈,為了節(jié)約材料同時(shí)要使矩形的面積最大,他利用了自家房屋一面長(zhǎng)的墻,設(shè)計(jì)了如圖所示的一個(gè)矩形羊圈.
(1)請(qǐng)你求出張大伯的矩形羊圈的面積;
(2)請(qǐng)你判斷他的設(shè)計(jì)方案是否合理?如果合理,直接答合理;如果不合理又該如何設(shè)計(jì)?并說(shuō)明理由.
【答案】(1)187.5;(2)張大伯的設(shè)計(jì)不合理,應(yīng)利用墻,設(shè)計(jì)長(zhǎng)為,寬為的矩形羊圈.
【解析】
(1)木欄只有三面,總長(zhǎng)為40,其中長(zhǎng)為25,則寬為,易求面積;
(2)設(shè)長(zhǎng)為x,表示出寬和面積,運(yùn)用函數(shù)的性質(zhì)求出面積最大時(shí)的長(zhǎng)和寬,然后回答問(wèn)題.
(1),故矩形的寬為.
∴.
(2)不合理.
理由是:設(shè)利用的墻作為矩形羊圈的長(zhǎng),則寬為,設(shè)矩形的面積為,
則,
∵,
∴當(dāng)時(shí),,
∵,
故張大伯的設(shè)計(jì)不合理,應(yīng)利用墻,設(shè)計(jì)長(zhǎng)為,寬為的矩形羊圈.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點(diǎn),且AB=CD.下列結(jié)論:①EG⊥FH,②四邊形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四邊形EFGH是菱形.其中正確的個(gè)數(shù)是 ( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某廣場(chǎng)設(shè)計(jì)的一建筑物造型的縱截面是拋物線的一部分,拋物線的頂點(diǎn)O落在水平面上,對(duì)稱軸是水平線OC.點(diǎn)A、B在拋物線造型上,且點(diǎn)A到水平面的距離AC=4米,點(diǎn)B到水平面距離為2米,OC=8米.
(1)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線的函數(shù)解析式;
(2)為了安全美觀,現(xiàn)需在水平線OC上找一點(diǎn)P,用質(zhì)地、規(guī)格已確定的圓形鋼管制作兩根支柱PA、PB對(duì)拋物線造型進(jìn)行支撐加固,那么怎樣才能找到兩根支柱用料最。ㄖеc地面、造型對(duì)接方式的用料多少問(wèn)題暫不考慮)時(shí)的點(diǎn)P?(無(wú)需證明)
(3)為了施工方便,現(xiàn)需計(jì)算出點(diǎn)O、P之間的距離,那么兩根支柱用料最省時(shí)點(diǎn)O、P之間的距離是多少?(不寫求解過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)當(dāng)時(shí),利用根的判別式判斷方程根的情況;
(2)若方程有兩個(gè)相等的實(shí)數(shù)根,請(qǐng)寫出一組滿足條件的的值,并求出此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn),的坐標(biāo)分別為和,拋物線的頂點(diǎn)在線段上運(yùn)動(dòng)(拋物線隨頂點(diǎn)一起平移),與軸交于、兩點(diǎn)(在的左側(cè)),點(diǎn)的橫坐標(biāo)最小值為-6,則點(diǎn)的橫坐標(biāo)最大值為( )
A.-3B.1C.5D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
(1)求證:△OCP∽△PDA;
(2)若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng);
(3)如圖2,擦去折痕AO、線段OP,連結(jié)BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.探究:當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線段EF與線段PB有何數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過(guò)點(diǎn)A作AD∥BC,與∠ABC的平分線交于點(diǎn)D,BD與AC交于點(diǎn)E,與⊙O交于點(diǎn)F.
(1)求∠DAF的度數(shù);
(2)求證:AE2=EFED;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=﹣x(x+3﹣a)+1是關(guān)于x的二次函數(shù),當(dāng)1≤x≤5時(shí),如果y在x=1時(shí)取得最小值,則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫(kù)的岸堤(岸堤足夠長(zhǎng))為一邊,用總長(zhǎng)為80米的圍網(wǎng)在水庫(kù)中圍成了如圖所示的①②③三塊矩形區(qū)域,而且AE:BE=2:1.設(shè)BC的長(zhǎng)度是米,矩形區(qū)域ABCD的面積為平方米.
(1)求與之間的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(2)取何值時(shí),有最大值?最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com