【題目】如圖,小華在體育館的看臺P處進行觀測,測得另一看臺觀眾A處的俯角為15°,觀眾B處的俯角為60°,已知觀眾A、B所在看臺的坡度i(即tan∠ABC)為1:,點P、H、B、C、A在同一個平面上,點H、B、C在同一條直線上,且PH⊥HC,PH=15米.
(1)AB所在看臺坡角∠ABC=____度;
(2)求A、B兩點間的距離.(結果精確到0.1米,參考數(shù)據(jù):≈1.73)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8厘米,BC=10厘米,點E在邊AB上,且AE=2厘米,如果動點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,動點Q在線段CD上由C點向D點運動,設運動時間為t秒,當△BPE與△CQP全等時,t的值為( )
A. 2B. 1.5或2C. 2.5D. 2或2.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,如圖1,AB是⊙O的弦,點F是的中點,過點F作EF⊥AB于點E,易得點E是AB的中點,即AE=EB.⊙O上一點C(AC>BC),則折線ACB稱為⊙O的一條“折弦”.
(1)當點C在弦AB的上方時(如圖2),過點F作EF⊥AC于點E,求證:點E是“折弦ACB”的中點,即AE=EC+CB.
(2)當點C在弦AB的下方時(如圖3),其他條件不變,則上述結論是否仍然成立?若成立說明理由;若不成立,那么AE、EC、CB滿足怎樣的數(shù)量關系?直接寫出,不必證明.
(3)如圖4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圓⊙O的半徑為2,過⊙O上一點P作PH⊥AC于點H,交AB于點M,當∠PAB=45°時,求AH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,過點A作⊙O的切線交BC的延長線于點D.
(1)求證:∠CAD=∠B.
(2)若AC是∠BAD的平分線,sinB=,BC=2.求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形ABCDE內接于⊙O點F為的中點,直線AP與⊙O相切于點A,則∠FAP的度數(shù)是( )
A. 36°B. 54°C. 60°D. 72°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平面直角坐標系xOy中,O為坐標原點,二次函數(shù)y=x2+bx+c的圖象經過點A(3,0)、點B(0,3),頂點為M.
(1)求該二次函數(shù)的解析式;
(2)求∠OBM的正切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王老師將個黑球和若干個白球放入一個不透明的口袋并攪勻,讓若干學生進行摸球實驗,每次摸出一個球(有放回),下表是活動進行中的一組統(tǒng)計數(shù)據(jù).
摸球的次數(shù) | ||||||
摸到黑球的次數(shù) | ||||||
摸到黑球的頻率 |
補全上表中的有關數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計從袋中摸出一個球是黑球的概率是________(精確到0.01);
估算袋中白球的個數(shù);
在的條件下,若小強同學有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計算他兩次都摸出白球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋中裝有2個黃球,1個紅球和1個白球,除色外都相同.
(1)攪勻后,從袋中隨機出一個球,恰好是黃球的概是_____?
(2)攪勻后,從中隨機摸出兩個球,求摸到一個紅球和一個黃球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com