【題目】如圖,小華在體育館的看臺P處進行觀測,測得另一看臺觀眾A處的俯角為15°,觀眾B處的俯角為60°,已知觀眾AB所在看臺的坡度i(tanABC)1,點P、HB、CA在同一個平面上,點H、B、C在同一條直線上,且PHHC,PH15米.

(1)AB所在看臺坡角∠ABC____度;

(2)AB兩點間的距離.(結果精確到0.1米,參考數(shù)據(jù):≈1.73)

【答案】(1)30(2)AB≈17.3m.

【解析】

1)作的延長線于,根據(jù)坡度的定義求出的值即可求得答案.

2)證明,求出即可求得答案.

解:(1)作的延長線于,如下圖所示,

由題意: ,

故答案為

(2)由題意,

,

,

,

,

中,∵

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】關于的一元二次方程有兩個不相等的實數(shù)根。

(1)求實數(shù)的取值范圍;

(2)若方程的兩實根,滿足,求的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8厘米,BC10厘米,點E在邊AB上,且AE2厘米,如果動點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,動點Q在線段CD上由C點向D點運動,設運動時間為t秒,當△BPE與△CQP全等時,t的值為( )

A. 2B. 1.52C. 2.5D. 22.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,如圖1,ABO的弦,點F的中點,過點FEFAB于點E,易得點EAB的中點,即AEEBO上一點CACBC),則折線ACB稱為O的一條“折弦”.

1)當點C在弦AB的上方時(如圖2),過點FEFAC于點E,求證:點E是“折弦ACB”的中點,即AEEC+CB

2)當點C在弦AB的下方時(如圖3),其他條件不變,則上述結論是否仍然成立?若成立說明理由;若不成立,那么AEEC、CB滿足怎樣的數(shù)量關系?直接寫出,不必證明.

3)如圖4,已知RtABC中,∠C90°,∠BAC30°,RtABC的外接圓O的半徑為2,過O上一點PPHAC于點H,交AB于點M,當∠PAB45°時,求AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,過點A作⊙O的切線交BC的延長線于點D

1)求證:∠CAD=∠B

2)若AC是∠BAD的平分線,sinBBC2.求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正五邊形ABCDE內接于⊙OF的中點,直線AP與⊙O相切于點A,則∠FAP的度數(shù)是(  )

A. 36°B. 54°C. 60°D. 72°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系xOy中,O為坐標原點,二次函數(shù)y=x2+bx+c的圖象經過點A(3,0)、點B(0,3),頂點為M.

(1)求該二次函數(shù)的解析式;

(2)求∠OBM的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師將個黑球和若干個白球放入一個不透明的口袋并攪勻,讓若干學生進行摸球實驗,每次摸出一個球(有放回),下表是活動進行中的一組統(tǒng)計數(shù)據(jù).

摸球的次數(shù)

摸到黑球的次數(shù)

摸到黑球的頻率

補全上表中的有關數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計從袋中摸出一個球是黑球的概率是________(精確到0.01);

估算袋中白球的個數(shù);

的條件下,若小強同學有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計算他兩次都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋中裝有2個黃球,1個紅球和1個白球,除色外都相同.

(1)攪勻后,從袋中隨機出一個球,恰好是黃球的概是_____

(2)攪勻后,從中隨機摸出兩個球,求摸到一個紅球和一個黃球的概率.

查看答案和解析>>

同步練習冊答案