【題目】二次函數(shù)y= ax+bx+c,自變量x 與函數(shù)y 的對應值如表:
x | ... | -5 | -4 | -3 | -2 | -1 | 0 | ... |
y | ... | 4 | 0 | -2 | -2 | 0 | 4 | ... |
下列說法正確的是( )
A. 拋物線的開口向下 B. 當x>-3時,y隨x的增大而增大
C. 二次函數(shù)的最小值是-2 D. 拋物線的對稱軸是x=-5/2
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,四邊形OABC為矩形,OA在x軸正半軸上,OC在y軸正半軸上,且A(10,0)、C(0,8)
(1)如圖1,在矩形OABC的邊AB上取一點E,連接OE,將△AOE沿OE折疊,使點A恰好落在BC邊上的F處,求AE的長;
(2)將矩形OABC的AB邊沿x軸負方向平移至MN(其它邊保持不變),M、N分別在邊OA、CB上且滿足CN=OM=OC=MN.如圖2,P、Q分別為OM、MN上一點.若∠PCQ=45°,求證:PQ=OP+NQ;
(3)如圖3,S、G、R、H分別為OC、OM、MN、NC上一點,SR、HG交于點D.若∠SDG=135°,HG=4,求RS的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=kx+n(k≠0)的圖象如圖所示,下面有四個推斷:
①二次函數(shù)y1有最大值;
②二次函數(shù)y1的圖象關于直線x=﹣1對稱
③當x=﹣2時,二次函數(shù)y1的值大于0
④過動點P(m,0)且垂直于x軸的直線與y1,y2的圖象的交點分別為C,D,當點C位于點D上方時,m的取值范圍是m<﹣3或m>﹣1.
以上推斷正確的是( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,AD=10.
(1)E是CD上的點,將△ADE沿折痕AE折疊,使點D落在BC邊上點F處.求DE的長;
(2)點P是線段CB延長線上的點,連接PA,若△PAF是等腰三角形,求PB的長;
(3)M是AD上的動點,在DC上存在點N,使△MDN沿折痕MN折疊,點D落在BC邊上點T處,請直接寫出線段CT長度的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對任意一個三位數(shù),如果滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”的各個數(shù)位上的數(shù)字之和記為. 例如時,.
(1)對于“相異數(shù)”,若,請你寫出一個的值;
(2)若都是“相異數(shù)”,其中,(,都是正整數(shù)),規(guī)定:,當時,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形,對角線交于點,點分別是的中點,連接交于,連接
(1)證明:四邊形是平行四邊形
(2)點是哪些線段的中點,寫出結論,并選擇一組給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2、C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.
老師要求學生在完成這道教材上的題目后,嘗試對圖形進行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小華首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質,小華用到的平行線性質可能是______________.
(2)接下來,小華用《幾何畫板》對圖形進行了變式,她先畫了兩條平行線AB,EF,然后在平行線間畫了一點C,連接AC,EC后,用鼠標拖動點C,分別得到了圖(2)(3)(4),小華發(fā)現(xiàn)圖(3)正是上面題目的原型,于是她由上題的結論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數(shù)量關系.然后,她利用《幾何畫板》的度量與計算功能,找到了這三個角之間的數(shù)量關系.
請你在小華操作探究的基礎上,繼續(xù)完成下面的問題:
①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關系: .
②補全圖(4),并直接寫出圖中∠BAC,∠ACE與∠CEF之間的數(shù)量關系: . (3)小華繼續(xù)探究:如圖(5),若直線AB與直線EF不平行,點G,H分別在直線AB、直線EF上,點C在兩直線外,連接CG,CH,GH,且GH同時平分∠BGC和∠FHC,請?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數(shù)量關系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com