【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為每次連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.
運(yùn)動(dòng)員丙測(cè)試成績(jī)統(tǒng)計(jì)表
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)(分) | 7 | 6 | 8 | 7 | 5 | 8 | 8 | 7 |
運(yùn)動(dòng)員丙測(cè)試成績(jī)的平均數(shù)和眾數(shù)都是7,
(1)成績(jī)表中的__________,_________;
(2)若在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰(shuí)更合適?請(qǐng)用你所學(xué)過(guò)的統(tǒng)計(jì)量加以分析說(shuō)明(參考數(shù)據(jù):三人成績(jī)的方差分別為、、)
(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球從乙手中傳出,球傳一次甲得到球的概率是____.
【答案】(1)a=7,b=7;(2)選乙運(yùn)動(dòng)員更合適;(3)
【解析】
(1)根據(jù)眾數(shù)、得到a、b中至少有一個(gè)為7,再根據(jù)平均數(shù)進(jìn)而確定a=b=7;
(2)求出甲、乙、丙的平均數(shù)、眾數(shù),通過(guò)平均數(shù)、眾數(shù)比較得出乙、丙較好,再根據(jù)方差,得出乙的成績(jī)較好,較穩(wěn)定;
(3)球從乙手中傳出,則傳給甲,丙兩人的概率相同,從而求出概率.
解:(1)由眾數(shù)的意義可知,a、b中至少有一個(gè)為7,又因?yàn)槠骄鶖?shù)是7,
即(56+a+b)÷10=7,
因此a=7,b=7,
故答案為:7,7;
(2)甲的平均分為:分,眾數(shù)是6分,
乙的平均分為:分,眾數(shù)是7分,
丙的平均分為:,眾數(shù)是7分,
從平均數(shù)上看,乙、丙的較高,從眾數(shù)上看乙、丙較高,
∵、,
∴<,
乙的成績(jī)更加穩(wěn)定,
故選乙運(yùn)動(dòng)員更合適;
(3)球從乙手中傳出,則傳給甲,丙兩人的概率相同,
∴球從乙手中傳出,球傳一次甲得到球的概率是P=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于點(diǎn)A,過(guò)點(diǎn)作AO的平行線交雙曲線于點(diǎn)B,連接AB并延長(zhǎng)與y軸交于點(diǎn),則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,骰子有六個(gè)面并分別標(biāo)有數(shù)1,2,3,4,5,6,如圖2,正六邊形頂點(diǎn)處各有一個(gè)圈,跳圈游戲的規(guī)則為:游戲者擲一次骰子,骰子向上的一面上的數(shù)字是幾,就沿正六邊形的邊順時(shí)針?lè)较蜻B續(xù)跳幾個(gè)邊長(zhǎng).
如:若從圈起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長(zhǎng),落到圈;若第二次擲得2,就從開(kāi)始順時(shí)針連續(xù)跳2個(gè)邊長(zhǎng),落到圈;……設(shè)游戲者從圈起跳.
(1)小明隨機(jī)擲一次骰子,求落回到圈的概率;
(2)小亮隨機(jī)擲兩次骰子,用列表法或畫樹(shù)狀圖法求最后落回到圈的概率,并指出他與小明落回到圈的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了發(fā)展學(xué)生的數(shù)學(xué)核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某市開(kāi)展了初三學(xué)生的數(shù)學(xué) 學(xué)業(yè)水平測(cè)試.在這次測(cè)試中,從甲、乙兩校各隨機(jī)抽取了 30 名學(xué)生的測(cè)試成績(jī)進(jìn)行調(diào)查分析
收集數(shù)據(jù)
甲校 | 94 | 82 | 77 | 76 | 77 | 88 | 90 | 88 | 85 | 86 | 88 | 89 | 84 | 92 | 87 |
88 | 80 | 53 | 89 | 91 | 91 | 86 | 68 | 75 | 94 | 84 | 76 | 69 | 83 | 92 | |
乙校 | 83 | 64 | 91 | 88 | 71 | 92 | 88 | 92 | 86 | 61 | 78 | 91 | 84 | 92 | 92 |
74 | 75 | 93 | 82 | 57 | 86 | 89 | 89 | 94 | 83 | 84 | 81 | 94 | 72 | 90 |
整理、描述數(shù)據(jù) 按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
人數(shù) 成績(jī) x 學(xué)校 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲校 | 1 | 2 | 5 | 15 | 7 |
乙校 | 1 | 2 | 10 |
(說(shuō)明:成績(jī) 80 分及以上為優(yōu)秀,60~79 分為合格,60 分以下為不合格) 分析數(shù)據(jù) 兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲校 | 83.4 | 86 | 88 |
乙校 | 83.2 |
(1)請(qǐng)你補(bǔ)全表格;
(2)若甲校有 300 名學(xué)生,估計(jì)甲校此次測(cè)試的優(yōu)秀人數(shù)為 ;
(3)可以推斷出 校學(xué)生的成績(jī)比較好,理由為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=x+的圖象與性質(zhì)進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y=x+的自變量x的取值范圍是_____.
(2)下表列出了y與x的幾組對(duì)應(yīng)值,請(qǐng)寫出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,請(qǐng)完成:
①當(dāng)y=﹣時(shí),x=_____.
②寫出該函數(shù)的一條性質(zhì)_____.
③若方程x+=t有兩個(gè)不相等的實(shí)數(shù)根,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)、在函數(shù)(,且是常數(shù))的圖像上,且點(diǎn)在點(diǎn)的左側(cè)過(guò)點(diǎn)作軸,垂足為,過(guò)點(diǎn)作軸,垂足為,與的交點(diǎn)為,連結(jié)、.若和的面積分別為1和4,則的值為( )
A.4B.C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】清清從家步行到公交車站臺(tái),等公交車去學(xué)校.下公交車后又步行了一段路程才到學(xué)校. 圖中的折線表示清清的行程s(米)與所花時(shí)間t (分)之間的函數(shù)關(guān)系. 下列說(shuō)法錯(cuò)誤的是( )
A. 清清等公交車時(shí)間為3分鐘 B. 清清步行的速度是80米/分
C. 公交車的速度是500米/分 D. 清清全程的平均速度為290米/分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(﹣2,0),對(duì)稱軸為直線x=1.有以下結(jié)論:
①abc>0;
②8a+c>0;
③若A(x1,m),B(x2,m)是拋物線上的兩點(diǎn),當(dāng)x=x1+x2時(shí),y=c;
④點(diǎn)M,N是拋物線與x軸的兩個(gè)交點(diǎn),若在x軸下方的拋物線上存在一點(diǎn)P,使得PM⊥PN,則a的取值范圍為a≥1;
⑤若方程a(x+2)(4﹣x)=﹣2的兩根為x1,x2,且x1<x2,則﹣2≤x1<x2<4.
其中結(jié)論正確的有( )
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>c;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)),其中結(jié)論正確的有( )
A.①②③B.②③⑤C.②③④D.③④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com