【題目】已知雙曲線的左、右焦點(diǎn)分別為,,過作一條直線與其兩條漸近線交于兩點(diǎn),若為等腰直角三角形,記雙曲線的離心率為,則______________.
【答案】2或
【解析】
根據(jù)等腰三角形直角頂點(diǎn)的不同,分三種情況討論.先求得對應(yīng)漸近線的傾斜角,可得漸近線的斜率,進(jìn)而得的等量關(guān)系,即可求得雙曲線離心率的平方值.
過作一條直線與其兩條漸近線交于兩點(diǎn),若為等腰直角三角形,有以下三種情況:
①,當(dāng)過的直線斜率不存在時(shí),如下圖所示:
根據(jù)雙曲線的對稱性可知,若為等腰直角三角形,
則.
所以其中一條漸近線的傾斜角為,即,
則,由雙曲線性質(zhì)可得,
所以;
②,當(dāng)過的直線與漸近線的兩支相交情況如下圖所示時(shí):
若為等腰直角三角形,
則,
所以此時(shí)其中一條漸近線的傾斜角為,由半角公式可得,
所以,
即,
所以由,
所以.
③當(dāng)過的直線與漸近線的兩支相交情況如下圖所示時(shí):
若為等腰直角三角形,
則,
所以此時(shí)其中一條漸近線的傾斜角為,由半角公式可得,
所以,
所以由,
所以,
綜上可知,雙曲線離心率的平方為2或,
故答案為:2或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國鐵路營業(yè)里程達(dá)到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是( )
A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營里程增加最顯著
B.從2014年到2018年這5年,高鐵運(yùn)營里程與年價(jià)正相關(guān)
C.2018年高鐵運(yùn)營里程比2014年高鐵運(yùn)營里程增長80%以上
D.從2014年到2018年這5年,高鐵運(yùn)營里程數(shù)依次成等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C與圓C1:5x2+5y2﹣mx﹣16y+32=0外切于點(diǎn)P(),且與y軸相切.
(1)求圓C的方程
(2)過點(diǎn)O作直線l1,l2分別交圓C于A、B兩點(diǎn),若l1,l2斜率之積為﹣2,求△ABC面積S的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車的投放,方便了市民短途出行,被譽(yù)為中國“新四大發(fā)明”之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機(jī)調(diào)查了100位成人市民,統(tǒng)計(jì)數(shù)據(jù)如下:
不小于40歲 | 小于40歲 | 合計(jì) | |
單車用戶 | 12 | y | m |
非單車用戶 | x | 32 | 70 |
合計(jì) | n | 50 | 100 |
(1)求出列聯(lián)表中字母x、y、m、n的值;
(2)①從此樣本中,對單車用戶按年齡采取分層抽樣的方法抽出5人進(jìn)行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?
②從獨(dú)立性檢驗(yàn)角度分析,能否有以上的把握認(rèn)為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān).
下面臨界值表供參考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面平面,B為線段的中點(diǎn),,四邊形為正方形,平面平面,,,M為棱的中點(diǎn).
(1)若N為線段上的點(diǎn),且直線平面,試確定點(diǎn)N的位置;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,側(cè)面是邊長為2的正方形,點(diǎn)、分別是線段,的中點(diǎn),且.
(1)證明:平面平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x2-1)lnx-x2+2x.
(1)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)證明:f(x)≥1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com