【題目】若函數(shù)滿足(1)對于定義域上的任意,恒有;(2)對于定義域上的任意當(dāng)時,恒有,則稱函數(shù)為“理想函數(shù)”,給出下列四個函數(shù)中:① ; ② ;③;④,則被稱為“理想函數(shù)”的有( )
A.①B.②④C.③D.④
【答案】B
【解析】
先理解“理想函數(shù)”的定義,再考查各函數(shù)的奇偶性及單調(diào)性,對于分段函數(shù),畫出函數(shù)圖像,再觀察圖像即可得解.
解:由題意可得“理想函數(shù)”為奇函數(shù)且在定義域上為減函數(shù),
對于①,的定義域?yàn)?/span>,函數(shù)的減區(qū)間為,即函數(shù)在上不為減函數(shù),即①不為“理想函數(shù)”;
對于②,為上的減函數(shù)且為奇函數(shù),即②為“理想函數(shù)”;
對于③,,即函數(shù)不為奇函數(shù),即③不為“理想函數(shù)”;
對于④,函數(shù)的圖像如圖所示,由圖可知④為“理想函數(shù)”;
即被稱為“理想函數(shù)”的有②④,
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為2,且橢圓的離心率為.
(1)求橢圓的方程;
(2)過橢圓的上焦點(diǎn)作相互垂直的弦,,求為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。
(1)求的值,并根據(jù)頻率分布直方圖估計(jì)該校學(xué)生一周課外閱讀時間的平均值;
(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加校“中華詩詞比賽”。經(jīng)過比賽后,從這6人中隨機(jī)挑選2人組成該校代表隊(duì),求這2人來自不同組別的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)?0,+∞),且對一切x>0,y>0都有,當(dāng)時,有
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性并加以證明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個數(shù)據(jù)的中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是定義R的奇函數(shù),當(dāng)時,.
(1)求函數(shù) 的解析式;
(2)畫出函數(shù)的簡圖(不需要作圖步驟),并求其單調(diào)遞增區(qū)間
(3)當(dāng)時,求關(guān)于m的不等式 的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,平面,,,,, 分別為,,的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,角, , 所對的邊分別為, , ,且.
(Ⅰ)求角的大小;
(Ⅱ)已知, 的面積為,求的周長.
【答案】(Ⅰ).(Ⅱ).
【解析】【試題分析】(I)利用正弦定理和三角形內(nèi)角和定理化簡已知,可求得的值,進(jìn)而求得的大小.(II)利用余弦定理和三角形的面積公式列方程組求解的的值,進(jìn)而求得三角形周長.
【試題解析】
(Ⅰ)由及正弦定理得, ,
,∴,
又∵,∴.
又∵,∴.
(Ⅱ)由, ,根據(jù)余弦定理得,
由的面積為,得.
所以 ,得,
所以周長.
【題型】解答題
【結(jié)束】
18
【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級蔬菜大棚”.為了解大棚的面積與年利潤之間的關(guān)系,隨機(jī)抽取了其中的7個大棚,并對當(dāng)年的利潤進(jìn)行統(tǒng)計(jì)整理后得到了如下數(shù)據(jù)對比表:
大棚面積(畝) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利潤(萬元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且與有很強(qiáng)的線性相關(guān)關(guān)系.
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)小明家的“超級蔬菜大棚”面積為8.0畝,估計(jì)小明家的大棚當(dāng)年的利潤為多少;
(Ⅲ)另外調(diào)查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?
參考數(shù)據(jù): , .
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在用二分法求方程在區(qū)間內(nèi)的近似解時,先將方程變形為,構(gòu)建,然后通過計(jì)算以判斷及的正負(fù)號,再按步驟取區(qū)間中點(diǎn)值,計(jì)算中點(diǎn)的函數(shù)近似值,如此往復(fù)縮小零點(diǎn)所在區(qū)間,計(jì)算得部分?jǐn)?shù)據(jù)列表如下:
步驟 | 區(qū)間左端點(diǎn) | 區(qū)間右端點(diǎn) | 、中點(diǎn)的值 | 中點(diǎn)的函數(shù)近似值 |
1 | 2 | 3 | 2.5 | -0.102 |
2 | 0.189 | |||
3 | 2.625 | 0.044 | ||
4 | 2.5 | 2.625 | 2.5625 | -0.029 |
5 | 2.5625 | 2.625 | 2.59375 | 0.008 |
6 | 2.5625 | 2.59375 | 2.578125 | -0.011 |
7 | 2.578125 | 2.59375 | 2.5859375 | -0.001 |
8 | 2.5859375 | 2.59375 | 2.58984375 | 0.003 |
9 | 2.5859375 | 2.58984375 | 2.587890625 | 0.001 |
(1)判斷及的正負(fù)號;
(2)請完成上述表格,在空白處填上正確的數(shù)字;
(3)若給定的精確度為0.1,則到第幾步驟即可求出近似值?此時近似值為多少?
(4)若給定的精確度為0.01,則需要到第幾步驟才可求出近似值?近似值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com