【題目】食品安全一直是人們關(guān)心和重視的問題,學校的食品安全更是社會關(guān)注的焦點.某中學為了加強食品安全教育,隨機詢問了36名不同性別的中學生在購買食品時是否看保質(zhì)期,得到如下“性別”與“是否看保質(zhì)期”的列聯(lián)表:
男 | 女 | 總計 | |
看保質(zhì)期 | 8 | 22 | |
不看保持期 | 4 | 14 | |
總計 |
(1)請將列聯(lián)表填寫完整,并根據(jù)所填的列聯(lián)表判斷,能否有的把握認為“性別”與“是否看保質(zhì)期”有關(guān)?
(2)從被詢問的14名不看保質(zhì)期的中學生中,隨機抽取3名,求抽到女生人數(shù)的分布列和數(shù)學期望.
附:,().
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)有的把握認為“性別”與“是否看食品保質(zhì)期”有關(guān)系
(2)分布列見解析,
【解析】(
分析:1)將列聯(lián)表填寫完整,求出,然后判斷性別與是否看保質(zhì)期之間是否有關(guān)系.
(2)判斷的取值為0,1,2.3,求出概率,然后得到分布列,求解期望即可.
詳解:
(1)填表如下:
男 | 女 | 總計 | |
看保質(zhì)期 | 8 | 14 | 22 |
不看保質(zhì)期 | 10 | 4 | 14 |
總計 | 18 | 18 | 36 |
根據(jù)列聯(lián)表中的數(shù)據(jù),可得
.
故有的把握認為“性別”與“是否看食品保質(zhì)期”有關(guān)系.
(2)由題意可知,的所有可能取值為,
,,
,,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有( )
A.60條
B.62條
C.71條
D.80條
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,的線性回歸直線方程為,且,之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的為
A.變量,之間呈現(xiàn)正相關(guān)關(guān)系B.可以預(yù)測,當時,
C.D.由表格數(shù)據(jù)可知,該回歸直線必過點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“節(jié)約用水”自古以來就是中華民族的優(yōu)良傳統(tǒng).某市統(tǒng)計局調(diào)查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如下圖所示.將月用水量落入各組的頻率視為概率,并假設(shè)每天的用水量相互獨立.
(l)求在未來連續(xù)3個月里,有連續(xù)2個月的月用水量都不低于12噸且另1個月的月用水量低于4噸的概率;
(2)用表示在未來3個月里月用水量不低于12噸的月數(shù),求隨杌變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)集合,其中.
(1)寫出集合中的所有元素;
(2)設(shè),證明“”的充要條件是“”
(3)設(shè)集合,設(shè),使得,且,試判斷“”是“”的什么條件并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是用模擬方法估計圓周率π的程序框圖,P表示估計結(jié)果,則圖中空白框內(nèi)應(yīng)填入( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動愛好者對自己的步行運動距離(單位:千米)和步行運動時間(單位:分鐘)進行統(tǒng)計,得到如下的統(tǒng)計資料:
如果與存在線性相關(guān)關(guān)系,
(1)求線性回歸方程(精確到0.01);
(2)將分鐘的時間數(shù)據(jù)稱為有效運動數(shù)據(jù),現(xiàn)從這6個時間數(shù)據(jù)中任取3個,求抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的概率。
參考數(shù)據(jù):,
參考公式:,。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為實常數(shù)).
(1)當時,作出的圖象,并寫出它的單調(diào)遞增區(qū)間;
(2)設(shè)在區(qū)間的最小值為,求的表達式;
(3)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com