【題目】已知 =(1,2), =(﹣3,2),當(dāng)k為何值時(shí):
(1)k + ﹣3 垂直;
(2)k + ﹣3 平行,平行時(shí)它們是同向還是反向?

【答案】
(1)解:由題意可得 k + =(k﹣3,2k+2), ﹣3 =(10,﹣4),

由 k + ﹣3 垂直可得 (k﹣3,2k+2)(10,﹣4)=10(k﹣3)+(2k+2)(﹣4)=0,解得k=19.


(2)解:由 k + ﹣3 平行,可得(k﹣3)(﹣4)﹣(2k+2)×10=0,解得k=﹣ ,

此時(shí),k + =﹣ + =(﹣ ), ﹣3 =(10,﹣4),顯然k + ﹣3 方向相反.


【解析】(1)由題意可得 k + ﹣3 的坐標(biāo),由 k + ﹣3 垂直可得它們的數(shù)量積等于 0,由此解得k的值.(2)由 k + ﹣3 平行的性質(zhì),可得(k﹣3)(﹣4)﹣(2k+2)×10=0,解得k的值.再根據(jù) k + ﹣3 的坐標(biāo),可得k + ﹣3 方向相反.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點(diǎn).

(1)求點(diǎn)的軌跡方程;

(2)已知兩點(diǎn)的坐標(biāo)分別為, ,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且直線分別交(1)中點(diǎn)的軌跡于兩點(diǎn)(四點(diǎn)互不相同),證明:直線恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin2x的圖象向左平移 個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式是(
A.y=cos2x
B.y=2cos2x
C.
D.y=2sin2x?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解不等式: ≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式12x2﹣ax>a2(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinx+cosx.
(1)求f(x)的最大值;
(2)設(shè)g(x)=f(x)cosx,x∈[0, ],求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)A(﹣2,0),B(0,2),點(diǎn)C是圓x2+y2﹣2x=0上的任意一點(diǎn),則△ABC的面積最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三棱臺(tái)的上、下底面的邊長分別是3和6.
(1)若側(cè)面與底面所成的角為60°,求此三棱臺(tái)的體積;
(2)若側(cè)棱與底面所成的角為60°,求此三棱臺(tái)的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點(diǎn),其橫坐標(biāo)分別為, ,線段的中點(diǎn)的橫坐標(biāo)為,且 恰為函數(shù)的零點(diǎn),求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案