【題目】釣魚(yú)島及其附屬島嶼是中國(guó)固有領(lǐng)土,如圖:點(diǎn)分別表示釣魚(yú)島、南小島、黃尾嶼,點(diǎn)在點(diǎn)的北偏東方向,點(diǎn)在點(diǎn)的南偏西方向,點(diǎn)在點(diǎn)的南偏東方向,且兩點(diǎn)的距離約為3海里.

(1)求兩點(diǎn)間的距離;(精確到0.01)

(2)某一時(shí)刻,我國(guó)一漁船在點(diǎn)處因故障拋錨發(fā)出求教信號(hào).一艘國(guó)艦艇正從點(diǎn)正東10海里的點(diǎn)處以18海里/小時(shí)的速度接近漁船,其航線為 (直線行進(jìn)),而我東海某漁政船正位于點(diǎn)南偏西方向20海里的點(diǎn)處,收到信號(hào)后趕往救助,其航線為先向正北航行8海里至點(diǎn)處,再折向點(diǎn)直線航行,航速為22海里/小時(shí).漁政船能否先于國(guó)艦艇趕到進(jìn)行救助?說(shuō)明理由.

【答案】(1)14.25(2)漁政船能先于國(guó)艦艇趕到進(jìn)行救助.

【解析】

(1)由題意,,,在中,由正弦定理可求兩點(diǎn)間的距離;(2)結(jié)合(1)可求出艦艇的到達(dá)時(shí)間,利用余弦定理可得漁政船的到達(dá)時(shí)間,比較所用時(shí)間即可得結(jié)論.

解:(1)求得,,由海里

(2)國(guó)艦艇的到達(dá)時(shí)間為:小時(shí)

中,

海里,所以漁政船的到達(dá)時(shí)間為:小時(shí).

因?yàn)?/span>,所以漁政船先到,答:漁政船能先于國(guó)艦艇趕到進(jìn)行救助.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)的最小值為﹣4,且關(guān)于x的不等式fx)≤0的解集為{x|1x3,xR}

1)求函數(shù)fx)的解析式;

2)求函數(shù)gx的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若x,,求,的值;

2)若x,,試判斷的奇偶性;

3)若函數(shù)在其定義域上是增函數(shù),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與軸交點(diǎn)的橫坐標(biāo)為.

(1)求;

(2)證明:當(dāng)時(shí),曲線與直線只有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校開(kāi)展一次知識(shí)競(jìng)賽活動(dòng),共有三個(gè)問(wèn)題,其中第1、2題滿分都是15分,第3題滿分是20分.每個(gè)問(wèn)題或者得滿分,或者得0分.活動(dòng)結(jié)果顯示,每個(gè)參賽選手至少答對(duì)一道題,有6名選手只答對(duì)其中一道題,有12名選手只答對(duì)其中兩道題.答對(duì)第1題的人數(shù)與答對(duì)第2題的人數(shù)之和為26,答對(duì)第1的人數(shù)與答對(duì)第3題的人數(shù)之和為24,答對(duì)第2題的人數(shù)與答對(duì)第3題的人數(shù)之和為22.則參賽選手中三道題全答對(duì)的人數(shù)是____;所有參賽選手的平均分是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù);

1當(dāng)時(shí),若,求的取值范圍;

2若定義在上奇函數(shù)滿足,且當(dāng)時(shí), ,

上的反函數(shù)

3對(duì)于(2)中的若關(guān)于的不等式上恒成立,求實(shí)

數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若上具有單調(diào)性,求實(shí)數(shù)k的取值范圍;

(2)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,分別是的中點(diǎn).

(1)證明:平面平面

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)拋物線的準(zhǔn)線軸交于橢圓的右焦點(diǎn)的左焦點(diǎn).橢圓的離心率為,拋物線與橢圓交于軸上方一點(diǎn),連接并延長(zhǎng)其交于點(diǎn), 上一動(dòng)點(diǎn),且在之間移動(dòng).

(1)當(dāng)取最小值時(shí),求的方程;

(2)若的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)面積取最大值時(shí),求面積最大值以及此時(shí)直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案