【題目】如圖,在直四棱柱中,底面為菱形,且側(cè)棱 其中為的交點(diǎn).
(1)求點(diǎn)到平面的距離;
(2)在線段上,是否存在一個(gè)點(diǎn),使得直線與垂直?若存在,求出線段的長;若不存在,請說明理由.
【答案】(1);(2)存在,.
【解析】
(1)由于菱形的對(duì)角線互相垂直平分,故以AC與BD的交點(diǎn)O為原點(diǎn),以射線OA、OB、分別為軸,建立空間直角坐標(biāo)系.由向量法求點(diǎn)到平面的距離.
(2)由向量的數(shù)量積為0求得,從而求得線段長.
(1) 由于菱形的對(duì)角線互相垂直平分,故以AC與
BD的交點(diǎn)O為原點(diǎn),以射線OA、OB、分別為
軸,建立空間直角坐標(biāo)系.
由已知條件,相關(guān)點(diǎn)的坐標(biāo)為,
設(shè)平面的法向量為由得
令,則.
因故點(diǎn)到平面的距離為
;
(2) 設(shè) 則由得
又
故當(dāng)時(shí),
于是,在線段上存在點(diǎn),使得此時(shí)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,若,則稱是“數(shù)列”.
(1)若是“數(shù)列”,且,,,,求的取值范圍;
(2)若是等差數(shù)列,首項(xiàng)為,公差為,且,判斷是否為“數(shù)列”;
(3)設(shè)數(shù)列是等比數(shù)列,公比為,若數(shù)列與都是“數(shù)列”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax,a∈R.
(1)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍;
(2)設(shè)函數(shù)g(x),證明:g(x)有極大值,且極大值小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某居民最近連續(xù)幾年的月用水量進(jìn)行統(tǒng)計(jì),得到該居民月用水量 (單位:噸)的頻率分布直方圖,如圖一.
(1)求的值,并根據(jù)頻率分布直方圖估計(jì)該居民月平均用水量;
(2)已知該居民月用水量與月平均氣溫(單位:℃)的關(guān)系可用回歸直線模擬.2019年當(dāng)?shù)卦缕骄鶜鉁?/span>統(tǒng)計(jì)圖如圖二,把2019年該居民月用水量高于和低于的月份作為兩層,用分層抽樣的方法選取5個(gè)月,再從這5個(gè)月中隨機(jī)抽取2個(gè)月,求這2個(gè)月中該居民恰有1個(gè)月用水量超過的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,是邊長為的正方形.且,點(diǎn)是的中點(diǎn).
(1)求證:;
(2)求平面與平面所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,右準(zhǔn)線的方程為分別為橢圓C的左、右焦點(diǎn),A,B分別為橢圓C的左、右頂點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過作斜率為的直線l交橢圓C于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),且,設(shè)直線AM,BN的斜率分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)的周期為,圖象的一個(gè)對(duì)稱中心為,將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長度后得到函數(shù)的圖象.
(1)求函數(shù)與的解析式;
(2)求證:存在,使得,,能按照某種順序成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左,右焦點(diǎn)分別為,,點(diǎn)P為雙曲線C右支上異于頂點(diǎn)的一點(diǎn),的內(nèi)切圓與x軸切于點(diǎn),則a的值為______,若直線經(jīng)過線段的中點(diǎn)且垂直于線段,則雙曲線C的方程為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)設(shè),若對(duì)任意的,存在使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com