【題目】橢圓的左、右焦點分別為、,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1

求橢圓C的方程;

為橢圓C上一動點,連接,設(shè)的角平分線PM交橢圓C的長軸于點,求實數(shù)m的取值范圍.

【答案】(1);(2)

【解析】

(1)由題意分別確定a,b的值求解橢圓方程即可;

(2)利用角平分線到兩邊的距離相等,結(jié)合橢圓方程分類討論求解實數(shù)m的取值范圍即可.

1由于,將代入橢圓方程,得,

由題意知,即

,,

故橢圓C的方程為;

2設(shè),

時,

時,直線的斜率不存在,易知

,則直線的方程為

由題意得,

,

,同理可得

時,

設(shè)直線,的方程分別為

由題意知,

,

,且,

,

整理得,,

綜合可得

時,同理可得

綜上所述,m的取值范圍是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的左、右焦點分別為,過點的直線,兩點,的周長為, 的離心率

(Ⅰ)求的方程;

(Ⅱ)設(shè)點,,過點軸的垂線,試判斷直線與直線的交點是否恒在一條定直線上?若是,求該定直線的方程;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真的取值范圍.

【答案】

【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.

試題解析:

范圍為

型】解答
結(jié)束】
18

【題目】如圖,設(shè)是圓上的動點,軸上的投影 上一點,.

1)當在圓上運動時,求點的軌跡的方程

2)求過點且斜率為的直線被所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是否存在常數(shù)a,b,c,使等式N+都成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某籃球運動員的投籃命中率為,他想提高自己的投籃水平,制定了一個夏季訓練計劃為了了解訓練效果,執(zhí)行訓練前,他統(tǒng)計了10場比賽的得分,計算出得分的中位數(shù)為15分,平均得分為15分,得分的方差為執(zhí)行訓練后也統(tǒng)計了10場比賽的得分,成績莖葉圖如圖所示:

請計算該籃球運動員執(zhí)行訓練后統(tǒng)計的10場比賽得分的中位數(shù)、平均得分與方差;

如果僅從執(zhí)行訓練前后統(tǒng)計的各10場比賽得分數(shù)據(jù)分析,你認為訓練計劃對該運動員的投籃水平的提高是否有幫助?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,過拋物線上一定點,作兩條直線分別交拋物線于,

(1)求該拋物線上縱坐標為的點到其焦點的距離;

(2)的斜率存在且傾斜角互補時,求的值,并證明直線的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體中,底面是邊長為的正方形,對角線相交于點,點在線段上,且,與底面所成角為.

1)求證:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,側(cè)面ABE⊥底面BCDE,BC=2,CD=4。

(I)證明:AB⊥面BCDE;

(II)若AD=2,求二面角C-AD-E的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知首項為的等比數(shù)列不是遞減數(shù)列,其前n項和為,且成等差數(shù)列。

1)求數(shù)列的通項公式;

2)設(shè),求數(shù)列的最大項的值與最小項的值。

查看答案和解析>>

同步練習冊答案