【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,側(cè)面PAD⊥底面ABCD,∠BCD=60°,,E是BC中點(diǎn),點(diǎn)Q在側(cè)棱PC上.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)若Q是PC中點(diǎn),求二面角E﹣DQ﹣C的余弦值;
(Ⅲ)是否存在Q,使PA∥平面DEQ?若存在,求出的值;若不存在,說明理由.
【答案】(Ⅰ)證明見解析(Ⅱ) (Ⅲ)存在,
【解析】
(Ⅰ)取中點(diǎn),連接,,.推導(dǎo)出.,.從而平面.由此能證明.
(Ⅱ)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系利用向量法能求出二面角的余弦值.
(Ⅲ)設(shè),,推導(dǎo)出,利用向量法能求出當(dāng)時(shí),平面.
證明:(Ⅰ)取中點(diǎn),連接,,.
因?yàn)?/span>,所以.
因?yàn)榱庑?/span>中,,所以.
所以.
因?yàn)?/span>,且平面,平面,
所以平面.
因?yàn)?/span>平面
所以.
解:(Ⅱ)由(Ⅰ)可知,,,
因?yàn)閭?cè)面底面,且平面底面,面
所以底面.
以為坐標(biāo)原點(diǎn),如圖建立空間直角坐標(biāo)系.
則,
因?yàn)?/span>為中點(diǎn),所以.
所以,,
設(shè)平面的法向量為.
即
所以平面的法向量為.
因?yàn)?/span>,
設(shè)平面的法向量為,
則,即.
令,則,即.
所以.
由圖可知,二面角為銳角,所以余弦值為.
(Ⅲ)設(shè)
由(Ⅱ)可知.
設(shè),則,
又因?yàn)?/span>,
所以,即.
所以在平面中,,
所以平面的法向量為,
又因?yàn)?/span>平面,所以,
即,解得.
所以當(dāng)時(shí),平面.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,().
(1)計(jì)算,,,,并求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;
(3)由數(shù)列的項(xiàng)組成一個(gè)新數(shù)列:,,,,,設(shè)為數(shù)列的前項(xiàng)和,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲乙兩地相距100海里,船從甲地勻速駛到乙地,已知某船的最大船速是36海里/時(shí):當(dāng)船速不大于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速成正比;當(dāng)船速不小于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比;當(dāng)船速為30海里/時(shí),它每小時(shí)使用的燃料費(fèi)用為300元;其余費(fèi)用(不論船速為多少)都是每小時(shí)480元;
(1)試把每小時(shí)使用的燃料費(fèi)用P(元)表示成船速v(海里/時(shí))的函數(shù);
(2)試把船從甲地行駛到乙地所需要的總費(fèi)用Y表示成船速v的函數(shù);
(3)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需要的總費(fèi)用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),與直線相交于點(diǎn).
證明:以為直徑的圓恒過軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對于數(shù)列,如果存在常數(shù),使對任意正整數(shù),總有成立,那么我們稱數(shù)列為“﹣擺動(dòng)數(shù)列”.
(1)設(shè),,,判斷數(shù)列、是否為“﹣擺動(dòng)數(shù)列”,并說明理由;
(2)已知“﹣擺動(dòng)數(shù)列”滿足:,.求常數(shù)的值;
(3)設(shè),,且數(shù)列的前項(xiàng)和為.求證:數(shù)列是“﹣擺動(dòng)數(shù)列”,并求出常數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,側(cè)棱底面,,,,,,,()
(1)求證:平面;
(2)若直線與平面所成角的正弦值為,求的值;
(3)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式.(直接寫出答案,不必說明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)討論f(x)的單調(diào)性;
(2)求f(x)在區(qū)間[﹣2,2]的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b是不相等的兩個(gè)正數(shù),在a,b之間插入兩組實(shí)數(shù):x1,x2,…,xn和y1,y2,…,yn,(n∈N*,且n≥2),使得a,x1,x2,…,xn,b成等差數(shù)列,a,y1,y2,…,yn,b成等比數(shù)列,給出下列四個(gè)式子:①;②;③;④.其中一定成立的是( 。
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com