【題目】如圖,在透明塑料制成的長方體容器內(nèi)灌進一些水(未滿),現(xiàn)將容器底面一邊固定在底面上,再將容器傾斜,隨著傾斜度的不同,有下列四種說法:

①水的部分始終呈棱柱狀;

②水面四邊形的面積為定值;

③棱始終與水面平行;

④若, ,則是定值.

則其中正確命題的個數(shù)的是( )

A. 1個 B. 2個 C. 3個 D. 4個

【答案】C

【解析】

結(jié)合題設中提供的圖形信息可知:當容器底面一邊固定時, ,故由線面平行的判定定理可知結(jié)論“棱始終與水面平行”成立;同時由于四邊形四邊形,且互相平行,則由棱柱的定義可知結(jié)論“水的部分始終呈棱柱狀”正確;如圖,由于水平放置時,水的高度是定值,所以當一部分上升的同時,另一面下降相同的高度,因為,所以 (定值),即結(jié)論“若, ,則是定值”是正確的;因為水面四邊形的邊長在變化,因此其面積是變化的,故結(jié)論“水面四邊形的面積為定值”是說法不正確。即命題①③④是正確的,應選答案C。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(1)求的展開式中的系數(shù)及展開式中各項系數(shù)之和;

(2)從0,2,3,4,5,6這6個數(shù)字中任取4個組成一個無重復數(shù)字的四位數(shù),求滿足條件的四位數(shù)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為3的菱形ABCD中,∠ABC=60°,平面ABCD,且EPD中點,F在棱PA上,且.

(1)求證:CE∥平面BDF;

(2)求點P到平面BDF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,為棱的中點.

求證:(1)平面

(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

1)求證:曲線在點處的切線過定點;

2)若在區(qū)間上的極大值,但不是最大值,求實數(shù)的取值范圍;

3)求證:對任意給定的正數(shù),總存在,使得上為單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面幾種推理是合情推理的是 ( )

①由圓的性質(zhì)類比出球的有關性質(zhì)

②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是180°歸納出所有三角形的內(nèi)角和都是180°

③某次考試張軍成績是100分,由此推出全班同學成績都是100分

④數(shù)列1,0,1,0,…,推測出每項公式

A. ①② B. ①③④ C. ①②④ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.

為定義在上的“局部奇函數(shù)”;

曲線軸交于不同的兩點;

為假命題, 為真命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面是某市環(huán)保局連續(xù)30天對空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù):

61 76 70 56 81 91 55 91 75 81

88 67 101 103 57 91 77 86 81 83

82 82 64 79 86 85 75 71 49 45

(Ⅰ)完成下面的頻率分布表;

(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中的值;

(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級某次數(shù)學競賽隨機抽取名學生的成績,分組為,統(tǒng)計后得到頻率分布直方圖如圖所示:

(1)試估計這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到);

(2)年級決定在成績中用分層抽樣抽取人組成一個調(diào)研小組,對髙一年級學生課外學習數(shù)學的情況做一個調(diào)查,則在這三組分別抽取了多少人?

(3)現(xiàn)在要從(2)中抽取的人中選出正副個小組長,求成績在中至少有人當選為正、副小組長的概率.

查看答案和解析>>

同步練習冊答案