【題目】判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);
(2)我國的小河流.

【答案】解:(1)大于3小于11的偶數(shù)是4,6,8,10;組成集合,記為A={4,6,8,10};
(2)我國的小河流不能組成集合,因為它不具備確定性的特點,小到什么程度才算是小河流,不能確定.
【解析】對集合中的元素特征進行分析與考查,判定元素是否具有確定性和互異性,從而確定是否組成集合.
【考點精析】解答此題的關(guān)鍵在于理解集合的含義的相關(guān)知識,掌握把研究的對象統(tǒng)稱為元素,把一些元素組成的總體叫做集合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|x≥2},B={x|0≤x<5},則集合(UA)∩B=(
A.{x|0<x<2}
B.{x|0≤x<2}
C.{x|0<x≤2}
D.{x|0≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】36的所有正約數(shù)之和可按如下方法得到:因為36=22×32 , 所以36的所有正約數(shù)之和為(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,參照上述方法,可求得2000的所有正約數(shù)之和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線y=f(x)在x=5處的切線方程是y=﹣x+8,則f(5)與f′(5)分別為(
A.3,3
B.3,﹣1
C.﹣1,3
D.﹣1,﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={a+2,(a+1)2 , a2+3a+3},若1∈A,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個三位數(shù)的十位數(shù)字比個位數(shù)字和百位數(shù)字都大,則稱這個數(shù)為“傘數(shù)”.現(xiàn)從1,2,3,4,5,6這六個數(shù)字中任取3個數(shù),組成無重復(fù)數(shù)字的三位數(shù),其中“傘數(shù)”有(
A.120個
B.80個
C.40個
D.20個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是(
A.自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系
B.在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性越強
C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2a|+|x﹣a|,a∈R,a≠0. (Ⅰ)當a=1時,解不等式f(x)>3;
(Ⅱ)若b∈R,且b≠0,證明:f(b)≥f(a),并說明等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|x2﹣2x﹣3>0},B={x|2m﹣1≤x≤m+3},若BA,則實數(shù)m的取值范圍

查看答案和解析>>

同步練習(xí)冊答案