【題目】如圖,四棱錐中, 平面△為等邊三角形, 是上的點,且.
(1)求和平面所成角的正弦值;
(2)線段上是否存在點,使平面?說明理由.
【答案】(1)(2)PB中點
【解析】試題分析:(1)分別利用等腰三角形的三線合一和線面垂直的性質得到線線垂直,進而利用線面垂直的判定定理證明線面垂直,作出線面角,再利用直角三角形進行求解;(2)先猜出該點位置,再利用利用線面垂直的判定定理進行證明.
試題解析:(1)取AD中點H,PD=PA, 所以,因為AB平面PAD,且PH平面PAD,
所以,又,所以平面.
∠PCH是PC和平面ABCD所成的角.
不妨令AB=2 ,CH=
在△
(2)線段上存在點,使平面.
理由如下:如圖,分別取的中點G、E,則, 由 , 所以,所以四邊形為平行四邊形,故.
因為AB平面PAD,所以,因此, ,因為為的中點,且, ,因此.
又,所以平面.
科目:高中數(shù)學 來源: 題型:
【題目】(題文)從某校高一年級隨機抽取名學生,獲得了他們日平均睡眠時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表:
組號 | 分組 | 頻數(shù) | 頻率 |
(Ⅰ)求的值.
(Ⅱ)若,補全表中數(shù)據(jù),并繪制頻率分布直方圖.
(Ⅲ)假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,若上述數(shù)據(jù)的平均值為,求,的值,并由此估計該校高一學生的日平均睡眠時間不少于小時的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,等腰的底邊,高,點是線段上異于點的動點,點在邊上,且,現(xiàn)沿將△折起到△的位置,使,記, 表示四棱錐的體積.
(1)求的表達式;(2)當為何值時, 取得最大,并求最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,某拋物線的頂點為原點,焦點為圓心,經(jīng)過點的直線交圓于, 兩點,交此拋物線于, 兩點,其中, 在第一象限, , 在第二象限.
(1)求該拋物線的方程;
(2)是否存在直線,使是與的等差中項?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校在今年的自主招生考試成績中隨機抽取 100 名考生的筆試成績,分為 5 組制出頻率分布直方圖如圖所示.
組號 | 分組 | 頻數(shù) | 頻率 |
1 | 5 | 0.05 | |
2 | 35 | 0.35 | |
3 | |||
4 | |||
5 | 10 | 0.1 |
(1)求的值.
(2)該校決定在成績較好的 、4、5 組用分層抽樣抽取 6 名學生進行面試,則每組應各抽多少名學生?
(3)在(2)的前提下,從抽到 6 名學生中再隨機抽取 2 名被甲考官面試,求這 2 名學生來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=2x3﹣6x2+m(m為常數(shù)),在[﹣2,2]上有最大值3,那么此函數(shù)在[﹣2,2]上的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com