【題目】某煤炭公司銷售人員根據(jù)該公司以往的銷售情況,得到如下頻率分布表
日銷售量分組 | [2,4) | [4,6) | [6,8) | [8,10) | [10,12] |
頻率 | 0.10 | 0.20 | 0.30 | 0.25 | 0.15 |
(1)在下圖中作出這些數(shù)據(jù)的頻率分布直方圖;
(2)將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨立.若未來3天內(nèi)日銷售量不低于6噸的天數(shù)為X,求X的分布列、數(shù)學(xué)期望與方差.
【答案】(1) 見解析(2) 見解析.
【解析】試題分析:(1)計算每一組的頻率/組距,即可完成頻率分布直方圖;
(2)易知X的所有可能取值為0,1,2,3,且X~B(3,0.7),從而可得解.
試題解析:
(1)由頻率分布表,得該廠日銷售量的頻率分布直方圖如下圖所示.
(2)因為日銷售量不低于6噸的頻率為0.30+0.25+0.15=0.7,且將頻率視為概率,所以日銷售量不低于6噸的概率為0.7.
X的所有可能取值為0,1,2,3,且X~B(3,0.7).
故P(X=0)=(1-0.7)3=0.027,P(X=1)=C×0.7×(1-0.7)2=0.189,
P(X=2)=C×0.72×(1-0.7)=0.441,
P(X=3)=0.73=0.343,
所以X的分布列為
X | 0 | 1 | 2 | 3 |
P | 0.027 | 0.189 | 0.441 | 0.343 |
E(X)=3×0.7=2.1,D(X)=3×0.7×(1-0.7)=0.63.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點E,F,G分別為線段BC,PB,AD的中點.
(1)證明:EF∥平面PAC;
(2)證明:平面PCG∥平面AEF;
(3)在線段BD上找一點H,使得FH∥平面PCG,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)判斷的奇偶性并證明;
(2)判斷的單調(diào)性并說明理由;
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種零件,每個零件的成本為100元,出廠單價定為160元,該廠為了鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100個時,每多訂一個,所訂購的全部零件的出廠單價就降低0.05元,但出廠單價不能低于130元.
(1)某零售商若一次訂購該零件300個,求該零售商所訂購零件的出廠單價;
(2)若某零售商一次訂購x個(x∈N*),零件的實際出廠單價為y元,試求y=f(x)的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標(biāo)原點O在圓M上;
(2)設(shè)圓M過點P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某片森林原來面積為a,計劃每年砍伐的森林面積是上一年年末森林面積的p%,當(dāng)砍伐到原來面積的一半時,所用時間是10年,已知到2018年年末,森林剩余面積為原來面積的,為保護生態(tài)環(huán)境,森林面積至少要保留原來面積的.
(1)求每年砍伐面積的百分比P%;
(2)到2018年年末,該森林已砍伐了多少年?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com