【題目】如圖,已知是橢圓的一個頂點,的短軸是圓的直徑,直線,過點P且互相垂直,交橢圓于另一點D,交圓于A,B兩點
Ⅰ求橢圓的標準方程;
Ⅱ求面積的最大值.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點,,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程,并說明它為何種曲線;
(Ⅱ)設點的坐標為,直線交曲線于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題 : 表示雙曲線,命題 : 表示橢圓。
(1)若命題與命題 都為真命題,則 是 的什么條件?
(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)
(2)若 為假命題,且 為真命題,求實數 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線的參數方程為為參數,直線與曲線分別交于兩點.
(1)若點的極坐標為,求的值;
(2)求曲線的內接矩形周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱錐D-ABC中,二面角A-BC-D的大小為90°,且∠BDC=90°,∠ABC=30°,BC=3,.
(1)求證:AC⊥平面BCD;
(2)二面角B-AC-D為45°,且E為線段BC的中點,求直線AE與平面ACD所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數的圖像向左平移個單位后得到函數的圖像,且函數滿足,則下列命題中正確的是()
A. 函數圖像的兩條相鄰對稱軸之間的距離為
B. 函數圖像關于點對稱
C. 函數圖像關于直線對稱
D. 函數在區(qū)間內為單調遞減函數
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com