【題目】六位同學(xué)圍成一圈依序循環(huán)報(bào)數(shù),規(guī)定:

①第一位同學(xué)首次報(bào)出的數(shù)為0.第二位同學(xué)首次報(bào)出的數(shù)為1,之后每位同學(xué)所報(bào)出的數(shù)都是前兩位同學(xué)所報(bào)出的數(shù)之和:

②若報(bào)出的是為3的倍數(shù),則報(bào)該數(shù)的同學(xué)需拍手一次.

當(dāng)?shù)?/span>50個(gè)數(shù)被報(bào)出時(shí),六位同學(xué)拍手的總次數(shù)為__________.

【答案】13

【解析】

這樣得到的數(shù)列這是歷史上著名的數(shù)列,叫斐波那契數(shù)列,首先求出這個(gè)數(shù)列的每一項(xiàng)除以3所得余數(shù)的變化規(guī)律,再求所求就比較簡(jiǎn)單了.

解:這個(gè)數(shù)列的變化規(guī)律是:從第三個(gè)數(shù)開(kāi)始遞增,且是前兩項(xiàng)之和,
那么有0、1、12、3、5、8、13、21、3455、89、144、233377、610987、
分別除以3得余數(shù)分別是0、1、1、2、02、2、1、01、1、2、0、2、2、1、
由此可見(jiàn)余數(shù)的變化規(guī)律是按0、1、12、0、2、2、1循環(huán),
循環(huán)周期是8.
在這一個(gè)周期內(nèi)第一個(gè)數(shù)和第五個(gè)數(shù)都是3的倍數(shù),

當(dāng)?shù)?/span>50個(gè)數(shù)被報(bào)出時(shí),其中包含6個(gè)周期再多2個(gè)數(shù),
所以在6個(gè)周期內(nèi)共有12個(gè)報(bào)出的數(shù)是三的倍數(shù),
后面2個(gè)報(bào)出的數(shù)中余數(shù)是0、1 ,只有一個(gè)是3的倍數(shù),故3的倍數(shù)總共有13個(gè),
也就是說(shuō)拍手的總次數(shù)為13.
故答案為:13.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,BOAO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,EAC的中點(diǎn),三棱錐的體積為

(1)求三棱錐的高;

(2)在線段AB上取一點(diǎn)D,當(dāng)D在什么位置時(shí),的夾角大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方體中,FAB的中點(diǎn),直線平面.

(Ⅰ)求長(zhǎng)方體的體積;

(Ⅱ)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】華為董事會(huì)決定投資開(kāi)發(fā)新款軟件,估計(jì)能獲得萬(wàn)元到萬(wàn)元的投資收益,討論了一個(gè)對(duì)課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬(wàn)元)隨投資收益(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的.

1)請(qǐng)分析函數(shù)是否符合華為要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因;

2)若華為公司采用模型函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型,試確定正整數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知無(wú)窮數(shù)列的前項(xiàng)和為,若對(duì)于任意的正整數(shù),均有,則稱數(shù)列具有性質(zhì).

1)判斷首項(xiàng)為,公比為的無(wú)窮等比數(shù)列是否具有性質(zhì),并說(shuō)明理由;

2)己知無(wú)窮數(shù)列具有性質(zhì),且任意相鄰四項(xiàng)之和都相等,求證:;

3)己知,數(shù)列是等差數(shù)列,,若無(wú)窮數(shù)列具有性質(zhì),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的短軸長(zhǎng)和焦距相等,左、右焦點(diǎn)分別為、,點(diǎn)滿足:.已知直線l與橢圓C相交于AB兩點(diǎn).

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若直線l過(guò)點(diǎn),且,求直線l的方程;

3)若直線l與曲線相切于點(diǎn)),且中點(diǎn)的橫坐標(biāo)等于,證明:符合題意的點(diǎn)T有兩個(gè),并任求出其中一個(gè)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求處的切線方程;

2)令,已知函數(shù)有兩個(gè)極值點(diǎn),且,求實(shí)數(shù)的取值范圍;

3)在(2)的條件下,若存在,使不等式對(duì)任意(取值范圍內(nèi)的值)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,,,平面平面.

(1)求證:;

(2)若,直線與平面所成角為,的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.

(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);

(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?

附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

同步練習(xí)冊(cè)答案