(本題滿分15分)拋物線的頂點在原點,焦點在射線x-y+1=0
上
(1)求拋物線的標(biāo)準(zhǔn)方程
(2)過(1)中拋物線的焦點F作動弦AB,過A、B兩點分別作拋物線的切線,設(shè)其交點為M,求點M的軌跡方程,并求出
的值
(Ⅰ)
(Ⅱ) -1
(1)
…………5分
(2)設(shè)
,
過拋物線A,B兩點的切線方程分別是
,
其交點坐標(biāo)
設(shè)AB的直線方程y=kx+1代入
,得x
2-4nx-4=0∴
……10分
∵
∴
而
∴
………15分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓C:
的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交
x軸正半軸于點Q,且
(1)求橢圓C的離心率;
(2)若過A、Q、F三點的圓恰好與直線
l:
相切,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知動點P到直線
的距離比它到點F
的距離大
.
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)若點P的軌跡上不存在兩點關(guān)于直線
l:
對稱,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
設(shè)橢圓
的左右焦點分別為
,離心率
,過
分別作直線
,且
,
分別交直線
:
于
兩點。
(Ⅰ)若
,求 橢圓的方程;
(Ⅱ)當(dāng)
取最小值時,試探究
與
的關(guān)系,并證明之.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若雙曲線的兩條漸近線的夾角為
,則該雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
與直線x= -2相切,且經(jīng)過點(2,0)的動圓圓心C的軌跡方程是_____.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點
在以兩坐標(biāo)軸為對稱軸的橢圓上,你能根據(jù)
點的坐標(biāo)最多寫出橢圓上幾個點的坐標(biāo)(
點除外)?這幾個點的坐標(biāo)是什么?
查看答案和解析>>