【題目】已知函數(shù)f(x)=3x,f(a+2)=27,函數(shù)g(x)·2ax-4x的定義域為[0,2].

(1)a的值;

(2)若函數(shù)g(x)[0,2]上單調(diào)遞減,λ的取值范圍;

(3)若函數(shù)g(x)的最大值是,λ的值.

【答案】(1) a=1.

(2) (-∞,2].

(3) λ=.

【解析】

(1)由指數(shù)的運算法則可得a=1.

(2)(1)g(x)·2x-4x.由題意可知任取0≤x1<x2≤2,Δy=y2-y1<0,原問題等價于λ<對于x[0,2]恒成立.據(jù)此可得λ的取值范圍是(-∞,2].

(3)設(shè)t=2x,換元可知1≤t≤4.y=-,1≤t≤4.結(jié)合二次函數(shù)的性質(zhì)分類討論可得λ=.

(1)27=3a+2=33,a=1.

(2)(1),g(x)·2x-4x.

任取0≤x1<x2≤2,Δx=x2-x1>0,

g(x)[0,2]上是減函數(shù),

Δy=y2-y1<0,

Δy=y2-y1=g(x2)-g(x1)·-(λ·)

·-()2-[λ·-()2]

=()[λ-()]<0,對于x[0,2]恒成立.

>0,

λ-()<0對于x[0,2]恒成立,

λ<對于x[0,2]恒成立.

>2,

λ≤2.

λ的取值范圍是(-∞,2].

(3)設(shè)t=2x,0≤x≤2,

1≤2x≤4.

1≤t≤4.

y=-t2+λt=-,1≤t≤4.

當(dāng)<1,λ<2,ymax=λ-1=,

λ=;

當(dāng)1≤≤4,2≤λ≤8,ymax=,

λ=[2,8]();

當(dāng)>4,λ>8,ymax=-16+4λ=,

λ=<8().綜上λ=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:

對某城市一年(365天)的空氣質(zhì)量進(jìn)行監(jiān)測,獲得的API數(shù)據(jù)按照區(qū)間 ,,,進(jìn)行分組,得到頻率分布條形圖如圖.

(1)求圖中的值;

(2)空氣質(zhì)量狀況分別為輕微污染或輕度污染定為空氣質(zhì)量Ⅲ級,求一年中空氣質(zhì)量為Ⅲ級的天數(shù)

(3)小張到該城市出差一天,這天空氣質(zhì)量為優(yōu)良的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若等比數(shù)列{an}的各項均為正數(shù),且a10a11+a9a12=2e5 , 則lna1+lna2+…lna20=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點分別是棱,的中點,是側(cè)面內(nèi)一點,若 平面,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的二次項系數(shù)為a(a<0).1,3是函數(shù)y=f(x)+2x的兩個零點.若方程f(x)+6a=0有兩個相等的根,f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,為棱的中點.

求證:(1)平面;

(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進(jìn)行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個球,球上所標(biāo)的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標(biāo)的面值為50元,其余3個均為10元,求:
①顧客所獲的獎勵額為60元的概率;
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在,使成立,則稱的不動點.已知函數(shù) .

1)當(dāng),時,求函數(shù)的不動點;

2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;

3)在(2)的條件下,若的兩個不動點為,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,,,記,,.

(1)當(dāng)時,求原點關(guān)于直線的對稱點坐標(biāo);

(2)在中,求邊上中線長的最小值;

(3)求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案