精英家教網 > 高中數學 > 題目詳情

【題目】已知F2、F1是雙曲線 =1(a>0,b>0)的上、下焦點,點F2關于漸近線的對稱點恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為(
A.3
B.
C.2
D.

【答案】C
【解析】解:由題意,F(xiàn)1(0,﹣c),F(xiàn)2(0,c), 一條漸近線方程為y= x,則F2到漸近線的距離為 =b.
設F2關于漸近線的對稱點為M,F(xiàn)2M與漸近線交于A,
∴|MF2|=2b,A為F2M的中點,
又0是F1F2的中點,∴OA∥F1M,∴∠F1MF2為直角,
∴△MF1F2為直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2﹣a2),∴c2=4a2 ,
∴c=2a,∴e=2.
故選C.
首先求出F2到漸近線的距離,利用F2關于漸近線的對稱點恰落在以F1為圓心,|OF1|為半徑的圓上,可得直角三角形MF1F2 , 運用勾股定理,即可求出雙曲線的離心率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】Sn為等比數列的前n項和,已知S2=2,S3=-6.

(1)求的通項公式;

(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數列

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足,.

(Ⅰ)證明:是等比數列;

(Ⅱ)證明:數列中的任意三項不為等差數列;

(Ⅲ)證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知fx)是定義在R上的偶函數,當x≥0時,fx=x2–2x+2

1)求函數fx)的解析式;

2)當x[mn]時,fx)的取值范圍為[2m2n],試求實數mn的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)若,且,求的最小值;

(2)若,且上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形為梯形,平面,,

中點.

(1)求證:平面平面;

(2)線段上是否存在一點,使平面?若存在,找出具體位置,并進行證明:若不存在,請分析說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為(t為參數).

(1)寫出直線l的普通方程與曲線C的直角坐標方程;

(2)設曲線C經過伸縮變換得到曲線,設M(x,y)為上任意一點,求的最小值,并求相應的點M的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是某市日至日的空氣質量指數趨勢圖,某人隨機選擇日至日中的某一天到達該市,并停留天.

(1)求此人到達當日空氣質量指數大于的概率;

(2)設是此人停留期間空氣質量指數小于的天數,求的分布列與數學期望;

(3)由圖判斷從哪天開始連續(xù)三天的空氣質量指數方差最大?(結論不要求證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線經過點,且圓上到直線距離為的點恰好有個,滿足條件的直線有( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案